Category Archives: Advanced nutrition

Research studies, hypotheses, data, etc.

Why diets fail, Op. 106

Correction: diets don’t fail, dieters do.  And don’t take that the wrong way; adhering to a restrictive diet is one of the most difficult tasks for ANYone; thus, the obesity epidemic.  Some recent insights into diet-induced weight loss success, or lack thereof, have shed a new light on why some dieters adhere and others don’t.

In Insulin resistance, I discussed how insulin sensitivity may influence how well someone responds to a diet.  In brief, insulin resistant obese people do much better on low carb than low fat in a closely controlled clinical setting.  If you’re one of the lucky few insulin sensitive obese people, then simply reducing calories works.  Unfortunately, however, most obese are insulin resistant.

When it comes to devising a weight loss strategy, I’m willing to cut every corner and use every trick in the book to achieve success.  Data in this new analysis came from Chris Gardner’s notorious A to Z study, where patients were given diet books and told to have at it.  It was the weakest intervention in the history of diet studies, but it is exactly what everyone who wants to lose weight does.  And just like in Gardner’s study, most people fail.

Continue reading

Insulin resistance

Why it is important and what you can do about it, Op. 105

 

This post was largely inspired by a recent manuscript by Chris Gardner.  He’s an outside-the-box thinker and if you haven’t heard of him, check out this YouTube video: The Battle of the Diets: Is Anyone Winning (At Losing?)

Part I.  

Type II diabetes is the clinical manifestation of insulin resistance.  It is preceded by obesity (except in the cases of MONW & NOD), and caused by poor nutrition.  Markers of insulin resistance are: 1) impaired fasting glucose; 2) impaired glucose tolerance; and 3) elevated HbA1c.  THIS is why it is important: in 2009, Barr and colleagues showed a linear relationship between all three of these risk factors and all-cause mortality in the AusDiab study.  All.  Cause.  Mortality.

Continue reading

Protein bar round-up, take II.

The meaning of ingredients, just the facts.

My official statement:  protein bars are not superior to high protein foods like steak or eggs; they’re just incredibly convenient.  For exercisers, it is much easier to snack on a protein bar than a Tupperware bowl full of chicken (on your way TO the gym, that is).  They shouldn’t be relied upon for providing substantial nutrition because, well, they don’t.

That said, while perusing the various categories of protein bars at Bodybuilding.com, I found some big differences between the “best sellers,” “newest,” and “highest rated.”  So which should you buy: what everyone else is buying (best sellers)? the new kids on the block (newest)? or the favorite (highest rated)?

Continue reading

A historical argument against caloric equality

80 years later, a calorie still isn’t a calorie.

Exhibit A.

The treatment of obesity   (Lyon and Dunlop, 1932)

As early as 1932, Lyon and Dunlop recognized that the calories from as little as one slice of bread every day could result in pounds of fat mass gained every year.  For whatever reason, this doesn’t happen to lean people; so they decided to study the effect of different diets on obese subjects in a metabolic ward at the Royal Infirmary.

Their idea of a “diet:” If they could only see how much times have changed!  (this is a hotly debated topic.)

Lyon and Dunlop first tested weight loss vs. total calorie intake.  The diet was roughly 40% carbs, 24% protein, and 36% fat.  Not surprisingly, people fed 800 kcal/d lost more weight than those given 1,000 or 1,200 kcal/d (200 vs. 172 vs. 157 grams of body weight lost per day over the period of 7 – 10 days), confirming that the less you eat, the more weight you lose (duh).  A calorie is a calorie after all, right? …

Continue reading

The easy diet diet II

Full disclosure.  IMHO, with regard to obesity and weight loss diets, low carb is a little bit better, most of the time.  It’s not such a huge difference that it’s ridiculously obvious, and in situations where low carb proper is too impractical, it might just be more important to focus on eliminating as many empty calories as possible.  Because as discussed in the Easy diet diet, Op. 72, you don’t have to go militant zero carb; simply “low carb seems to work pretty well.

In type 2 diabetes, randomization to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss (Gulbrand et al., 2012)

[if you follow the advice, that is, at least to some degree] Continue reading

Nutrient timing, Op. 101

There is no longer a debate on the value of protein supplements for exercisers.  Now I’d like to make the case for protein timing, or more specifically the value of pre-workout protein supplementation.

Cribb and Hayes (2006) examined the two extremes of protein consumption: immediately before and after working out (“PRE-POST”) vs. 8 hours before and 8 hours after working out (early morning and late evening; “MOR-EVE”).  Each protein shake contained 40 grams protein, 43 grams glucose, and 7 grams creatine.  The subjects were recreational weight lifters, an interesting choice in terms of data interpretation.  I.e., novices are expected to see much greater gains from beginning a new exercise program than experienced exercisers.  Thus, any difference between the groups is expected to be greater.  For example: compare the difference between 5 and 10 to that of 1 and 2.  The relative difference (2x) is the same in both cases, but the absolute difference between 5 and 10 is significantly greater and thus easier to detect.  This stacked the odds against seeing a difference between treatments.  The advantage is that experienced lifters know how to do a high intensity workout, and the results are applicable to people who already exercise.

Notes on the wonders of energy balance:
The protein shakes added ~272 kcal to their total food intake, which caused them to eat less during the rest of the day.  Interestingly, food intake declined by 74 kcal in the PRE-POST group and over twice as much (172 kcal) in MOR-EVE.  Food intake declined in MOR-EVE because the extra calories were just floating around in the bloodstream and thus available to register lots of “excess energy” to the brain.  But the increase in muscle was 2x greater in PRE-POST than MOR-EVE; thus, the extra calories in PRE-POST were immediately invested in laying down new lean mass and therefore weren’t around to signal “excess energy” to the brain.

energy in energy out is bollocks

How the “energy in” is handled is critically important.  With regard to an energy excess, dessert before bedtime is stored as fat but the same amount of calories from protein before exercise are invested into muscle.

A calorie isn’t a calorie because body composition matters.

Continue reading

These nutters ate only meat for a year. Place your bets!

Who defines “moderation,” anyway?  An homage to pioneering nutrition research III, Op. 100.  Keep an open mind!  (and remember these words: “no clinical evidence of vitamin deficiency was noted.”)

MY LIFE WITH THE ESKIMO (Stefansson, 1913)

The effects on human beings of a twelve months’ exclusive meat diet (Lieb, 1929)

Prolonged meat diets with a study of kidney function and ketosis (McClellan and Du Bois, 1930)

Vilhjalmur Stefansson traveled with Eskimos in the Arctic for 9 years and lived almost exclusively on meat.  Then he and a fellow expeditioner (Andersen) decided to recapitulate this in a well-controlled, albeit warmer (New York), laboratory setting so they could document the metabolic insanity that ensued. At the time, the Eskimo diet was moderate protein, very high fat, yet they had no heart or kidney problems, were glucose tolerant, and exhibited no signs of ketoacidosis.  So the scientists said: “why not?”  (they were really hoping this apparent healthiness wasn’t due to the frigid Arctic temperatures.)

The studies describe the Central Plains’ Indians who subsisted almost entirely of buffalo meat, which they called the “staff of life,” and South American tribes which eat solely beef and water, then go on to say [sic]: “All of these races are noted for their endurance of exertion and hardships.”  They cite two tribes of Eskimos:  Greenlanders, who ate the typical diet (described above) and showed no signs of rickets or scurvey; and the Labradors, who had both diseases but ate more potatoes, flour, and cereals.  While traversing the Arctic, Andersen developed scurvy at a time when he was eating canned foods and very little meat; this was immediately cured by with raw meat :/

Food for thought: this diet is seriously deficient in vitamin C by today’s standards, but they exhibited NO symptoms.  Perhaps vitamin requirements vary based on the background diet?  Maybe our vitamin C requirement is increased by a Western diet (>50% carbs and lots of vegetable oils).  just sayin’

Continue reading

Adipose, Horcrux of Metabolism

Part II.  The importance of the ability to un-store fat: implications for resistance exercise and muscle function in humans.

Adipose triglyceride lipase contributes to cancer-associated cachexia  (Das et al., 2011)

Mice and humans with certain types of cancer lose a lot of weight, a condition known as cachexia.  Besides causing a major decline in quality of life, this usually predicts mortality.  But tumor-burdened ATGLko mice exhibit none of this (closed bar = control; open bar = mice with tumors):

Unfortunately, much of this weight is type II muscle (left), while type I muscle is largely spared (right).  ATGLko mice are immune to muscle loss.

Type II muscle is white, burns sugar, and flexes fast and strong (that’s why I said “unfortunately,” above).  Type I muscle is red, burns fat, and flexes slow and weak.

Continue reading

adipose, horcrux of metabolism

You wanna burn fat?  ATGL (Adipocyte Triacylglycerol Lipase) is your man.  ATGL is responsible for breaking down fat, a necessary precondition for fat burning.  Mice lacking ATGL accumulate tons of fat: 20x more in the heart, 10x more in testis, 3x more in skeletal muscles, 2x more in the GI tract, etc., etc.  Not surprisingly, they’re overweight.

Part 1.  The importance of the ability to un-store fat: appetite, body composition, and insulin.

Continue reading

the bang for your exercise bucks

Exercise causes weight loss when it’s accompanied by diet…  but then again, so does art lessons.  a continuation of “Exercise alone won’t cut it

Effect of an energy-restrictive diet, with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women (Svendsen et al., 1993)

Svendsen divided postmenopausal women in their mid-fifties into three groups for 12 weeks: 1) diet; 2) diet + exercise; and 3) none of the above (a weight-maintenance control, kudos!).  Dieters went from eating 1800 to 1000 kcal/d of a high protein low fat diet.  The exercise consisted of 1.5 hours of aerobic and resistance training 3x per week.  The results, in a nutshell: dieting was effective (they lost weight).  Exercising was effective (fitness improved).  So how much additional benefit did exercise provide? Not much.  The diet alone group lost 21 pounds, while the diet + exercise group lost 23 pounds.  Is that worth 4.5 hours of high intensity exercise?  Body composition was mildly improved by the addition of exercise, as body fat percent declined 19% with diet + exercise and only 14% with diet alone.  But 4.5 hours of high intensity exercise is a LOT of work; and resting metabolic rate declined the most in the exercise group.  To its credit, exercise improved fitness considerably, which bodes well for quality of life, but just to keep it straight, diet alone reduced body weight by 21 pounds; exercise took off an additional 2 pounds… BUT as it turns out, those additional two pounds were probably also from diet, as the exercisers reduced food intake by an additional 57 kcal/d.  This doesn’t sound like much, but over the course of 12 weeks it adds up to 4788 kcal (that’s over a pound of fat mass).  In other words, exercise didn’t contribute to the weight loss.  The Laws of Energy Balance can be cruel.

Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women (Brochu et al., 2009)

Study design was similar to Svendsen’s (postmenopausal women, mid-fifties, etc.), with the exceptions that the diet was less strict and the exercise was resistance training, not aerobic (e.g., treadmill).  Dieting worked (both groups lost weight).  Exercising worked (they got significantly stronger).  So how much additional benefit did exercise provide?  You guessed it: not much.  The diet alone group lost 11 pounds; diet + exercisers lost 13 pounds.  3 sessions of high intensity exercise per week for 6 months led to 2 additional pounds of weight loss.  Unlike Svendsen’s exercisers, however, those two hard-earned pounds were probably due to the exercise, as metabolic rate and food intake declined to the same extent in both groups.  6 months of high intensity weight training for two pounds?  The Laws of Energy Balance: merciless.

Effect of diet and exercise, alone or combined, on weight and body composition in overweight-to-obese postmenopausal women (Foster-Schubert et al., 2012)

Saved the best for last: this study included both a weight maintenance control AND an “exercise only” group.  Kudos, Dr Foster-Schubert.  Study design was similar to Brochu’s and Svendsen’s: 12 months; moderate to high intensity aerobic exercise 3-5x per week, yada yada yada.  Dieting worked (the diet alone and diet + exercise groups lost weight).  Exercising worked (the exercise alone and diet + exercise groups got fitter).  So how much additional benefit did exercise provide?  Fail.  The dieters lost 16 pounds while the diet + exercise group lost 20 pounds.  The exercisers lost 4 pounds.  From those numbers, it might appear as though weight loss from exercise contributed mathematically to diet (4 + 16 = 20).  NOPE.  The exercisers cheated, by dieting :/
Exercisers reduced food intake by 185 kcal/d which amounts to a whopping 66600 kcal over the course of a year.  Theoretically, this could’ve amounted to a loss of over 15 pounds of fat mass.  But it didn’t.  Exercise caused a great enough reduction in metabolic rate to dwindle a 20 pound fat loss all the way down 4 pounds.  Exercise made them 16 pounds slothier.  And what about the diet + exercise group; they lost the most weight so surely exercise had to have added something to it?  NOPE, not here either.  They reduced their food intake more than any other group. The Laws of Energy Balance scoff at exercise.

bollocks

So there you have it.  Trying to lose weight via exercise alone is like bringing a cup of water to a forest fire.  It is too easily compensated for by reductions in metabolic rate.  In studies spanning the course of 20 years, exercise has consistently failed to contribute to weight loss.  Exercisers lost weight if and only if they dieted.  Diet + exercise might be as effective as diet + art lessons or diet + Facebook, although the latter two are less likely to make you slothier.  Exercise will make you better, and maybe even happier, just not skinnier.

calories proper