Category Archives: fat

Pharmaceutical-grade circadian manipulation.

BMAL1 and CLOCK, ‘positive’ regulators of circadian gene expression, activate transcription of the negative regulators Per, Cry, and Rev-erb.  PER and CRY inhibit BMAL1 and CLOCK, whereas Rev-erb inhibits Bmal1.  It is said that Rev-erb is “an important link between the positive and negative loops of the circadian clock.”  You don’t really need to know any of that to follow this blog post.

circadian genes

Continue reading

Diet study: American Diabetes Association vs. Low Carb Ketogenic

A randomized pilot trial of a moderate carbohydrate diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2 diabetes mellitus or prediabetes (Saslow et al., 2014)

Disclaimer: this study was not ground-breaking; it was confirmation of a phenomenon that is starting to become well-known, and soon to be the status quo. That is, advising an obese diabetic patient to reduce their carb intake consistently produces better results than advising them to follow a low fat, calorie restricted diet.

The two diets:

Moderate carbohydrate diet: 45-50% carbs; 45 grams per meal + three 15 gram snacks = 165 grams per day; low fat, calorie restricted (500 Calorie deficit).  Otherwise known as a “low fat diet (LFD).”

In their words: “Active Comparator: American Diabetes Association Diet.  Participants in the American Diabetes Association (ADA) diet group will receive standard ADA advice. The diet includes high-fiber foods (such as vegetables, fruits, whole grains, and legumes), low-fat dairy products, fresh fish, and foods low in saturated fat.

Very low carbohydrate diet: Ketogenic; <50 grams of carb per day, no calorie restriction, just a goal of blood ketones 0.5 – 3 mM.

In their words: “Experimental: Low Carbohydrate Diet.  Participants will be instructed to follow a low carbohydrate diet: carbohydrate intake 10-50 grams a day not including fiber. Foods permitted include: meats, poultry, fish, eggs, cheese, cream, some nuts and seeds, green leafy vegetables, and most other non-starchy vegetables. Because most individuals self-limit caloric intake, no calorie restriction will be recommended.

Both groups were advised to maintain their usual protein intake.

Continue reading

Fermented meat & probiotics

From Slate: “Sausage made with bacteria from baby poop isn’t as gross as it sounds.” 

and my favorite: “Pooperoni? Baby-poop bacteria help make healthy sausages.

Much ado about: Nutritionally enhanced fermented sausages as a vehicle for potential probiotic lactobacilli delivery (Rubio et al., 2014)

The media seems to have missed the ball, but not by far.  They focused on healthy microbes being incorporated into fermented meats, whereas the scientists seemed to want to make a “healthier” low-salt, low-fat sausage.

The low-salt part seems to partially make sense from a fermentation-perspective: using probiotics instead of salt to reduce the potential for pathogenic microbial contamination.  However, I doubt reducing the sodium by 25% will have any appreciable impact on health outcomes.  The effect of adding beneficial microbes, on the other hand, might.

They also mentioned making it lower in fat, but that doesn’t make as much sense; I don’t think there’s a big contamination risk of having a higher fat content.  #lipophobia

Continue reading

Insulin, dietary fat, and calories: context matters!

Jane Plain recently wrote a great article about the relationship between insulin, dietary fat, and calories.  There are a lot of data on this topic, which collectively suggest: context matters! 

For example,

Insulin and ketone responses to ingestion of MCTs and LCTs in man. (Pi-Sunyer et al., 1969)

14 healthy subjects, overnight fasted; dose: 1g/kg.

In brief, MCTs are more insulinogenic than corn oil.  But it’s not a lot of insulin.  Really.  Enough to inhibit lipolysis, perhaps, but that’s not saying much… & certainly not enough to induce hypoglycemia.

Pi-Sunyer MCT Corn oil

Continue reading

Carbohydrates, calories, appetite, and body weight.

The Optimal Diet, Atkins, South Beach, Paleo, Zone… all have one thing in common: some degree of carbohydrate restriction.

Low, lower, lowest: does it matter?

There are 4 relatively large, randomized ‘diet-induced weight loss’ studies that all reported fairly comprehensive food intake and body composition data. The studies ranged in duration from 24 weeks to one year and included anywhere between 50 and ~300 overweight and obese participants.

In general, participants assigned to the low fat intervention were advised to restrict calories and fat whereas those assigned to low carb were told they could eat as much as they wanted as long as it wasn’t carbs.

Your mileage may vary – but these studies cover a large number of subjects from a wide range of backgrounds, suggesting the results might be applicable across the board.  Conclusion?  the amount of body fat lost was much more strongly associated with the reduction in carbohydrates than calories.  The only modestly surprising aspect was the magnitude… (see the figures below).

The four studies, in chronological order:

Brehm 2003: over the course of 6 months, those who consumed an average of 163 grams of carbohydrate per day lost 8.6 pounds of body weight while those who consumed 97 grams lost 18.7 pounds.

McAuley 2005: 24 weeks; those who ate 171 grams lost 10.3 pounds, while those who ate 133 grams lost 15.2 pounds, and those who ate 107 grams lost 15.6 pounds.

Maki 2007: 36 weeks; those who ate 186 grams lost 5.7 pounds, those who ate 131 grams lost 9.9 pounds.

Gardner 2007: 1 year – those who ate 138 grams lost 10.3 pounds, 181 grams lost 3.5 pounds, 195 grams lost 4.8 pounds, and 197 grams lost 5.7 pounds.

Continue reading

Ketoacidosis

Nutritional ketosis is a normal, physiological response to carbohydrate and energy restriction.  A ketogenic diet is an effective weight loss strategy for many.  Ketoacidosis, on the other hand, is a pathological condition caused by insulin deficiency.  The common theme is low insulin; however, in ketoacidosis, blood glucose levels are very high.  Ketone levels are elevated in both states, although are 10-20x higher in ketoacidosis (~0.5-2 vs. > 20 mM).  Nutritional ketosis and ketoacidosis should not be confused with one another, and a ketogenic diet doesn’t cause ketoacidosis.

In ketoacidosis, gluconeogenesis occurs at a very high rate and the lack of insulin prevents glucose disposal in peripheral tissues.  Skeletal muscle protein breakdown contributes gluconeogenic substrates, exacerbating the problem.  This can cause blood glucose to reach pathological levels, exceeding 250 mg/dL.

Continue reading

Impact of a low-carbohydrate, high-fat diet on gut microbiota.

NPR recently reported on a study where the participants ate either a meat-based, fiber-free ketogenic diet or a vegetarian diet and had their gut microflora analyzed.  The low carb diet was much higher in fat, and as such, increased the prevalence of a microbe involved in fat digestion.  “Bilophila.”  The article focused on this one and cited a 2012 study where Bilophila was associated with intestinal inflammation… however, the ketogenic diet increased the levels of Bacteroides and decreased Firmicutes.  These are the two that brought the whole gut microbe-obesity connection into the spotlight.  The microbiome in obese mice is characterized by low Bacteriodetes and high Firmicutes. Fecal transplants from obese mice to lean mice causes them to gain weight.  Little is known about Bilophila relative to Bacteriodetes & Firmicutes, and I suspect the focus was on Bilophila because the authors wanted something negative to say about a meat-based, fiber-free ketogenic diet, and that 2012 mouse study suggested Bilophila could be their answer.

Continue reading

Dietary protein, ketosis, and appetite control.

Dietary protein has a purpose, and that purpose is not carbs.”  Nor is it to break ketosis or stall weight loss.  

Drastically increasing protein intake may reduce the degree of ketosis in the context of a large energy surplus, but this is likely due more specifically to the large energy surplus than the protein.  This would explain why Warrior dieters (1 meal meal per day) often report reduced ketones if they eat too much protein.  It’s more likely that the 2000 kcal bolus is exerting it’s anti-ketotic effect by being a large energy surplus, such that anything other than 90% fat would blunt ketosis.  It’s not the proteins… Want proof?  Here’s an n=1 to try: give up Warrior dieting for a few days and try 3 squares.  My bet is that you’ll be able to increase protein intake and still register ketones as high or higher than before.  There are data to support this and reasons why it may not matter (below).

disclaimer: I don’t think “deep ketosis” is necessary to reap the benefits of carbohydrate-restriction.  But if you love high ketone meter readings, then this might be a better strategy to maintain deep ketosis while getting adequate protein. win-win.

if I hear: “oh no, I was kicked out of ketosis!” one more time… 

All of the studies below are confounded one way or another, but so are we humans.

Continue reading

Implications of the circadian nature of ketones.

Ketosis.  Happens during starvation and also by restricting carbohydrates (and protein, to a lesser degree)… might be important for epilepsy and bipolar disorder, too.

ketogenesis

Ketostix measure urinary acetoacetate (AcAc) and reflect the degree of ketosis in the blood probably about 2-4 hours ago.  Blood ketone meters measure beta-hydroxybutyrate (bHB) right now.  bHB fluctuates to a greater degree, eg, it plummets after a meal whereas AcAc takes longer to decline.  AcAc/bHB is usually around 1, but increases after a meal (Mori et al., 1990):Ketone body ratio

Conversely, when glucose levels decline and fatty acid oxidation increases, liver redox potential drops which reduces AcAc/bHB.

Continue reading

Summer is fattening. Don’t do it in winter.

Seasonal eating proper

More on seasonal eating in what appears to be the primary model for its justification for use in humans – hibernating mammals.

How it goes, or so they say: in summer, hibernators massively overeat, including carb-rich foods, in order to generate muscle and liver insulin resistance, so as to promote body fat growth.  The long light cycle reduces evening melatonin, which pushes back the usual nighttime peak in prolactin, which causes an abnormal resistance to leptin, which induces hypothalamic NPY and subsequent carbohydrate craving.  Ergo, summer is fattening.  In today’s day, increased artificial lights guarantee year-round pseudo-summer; and we no longer experience the benefits of the short light cycle: longer sleep times (akin to hibernation) and fasting – either complete fasting as in hibernation, or pseudo-fasting, ie, a ketogenic diet.

Continue reading