Category Archives: empty calories

USDA vs. nutrition, round II

The school lunch program is screwed.

First the USDA modifies the definition of a vegetable to include pizza.  Now they significantly altered their standards for school lunches to include fewer healthy foods and more USDA-approved ones (see report at the USDA’s website).  In brief, this move further reduces the nutrition of school lunches and will likely do more harm than good.  Here’s why:

In this cross-sectional Swedish study, parents recorded 7-day food diaries for their 4-year old children who then went in for a regular checkup.

Metabolic markers in relation to nutrition and growth in healthy 4-y-old children in Sweden (Garemo et al., 2006 AJCN)

On a 1,400 kcalorie diet, these children were consuming roughly 15% protein, 33% fat, and 52% carbs (about 20% of which came from sucrose).  That seems like a lot of calories, but besides playing all day, 4 year old children are also growing at an incredible rate.

Interesting finding numbers 1 & 2:  Children who got most of their calories from fat had the lowest BMI (i.e., they were the leanest), and the opposite was observed for carbs.

When divided into groups of normal weight vs. overweight and obese, some interesting and non-intuitive patterns emerged.  For example, lean kids don’t eat less food; but they do eat fewer carbs and less sucrose (and make up the difference by eating more fat and saturated fat).

Some of the weaker correlations showed:
-total calorie intake was associated with growth (logical)
-total carbohydrate intake was associated with increased fat mass (unfortunate yet also logical)
-total fat intake was associated with decreased fat mass (interesting)

And those who ate the most saturated fat had the least amount of excess body fat. (more on this below)

Fortunately, in a young child, a poor diet hasn’t had enough time to significantly impact their metabolic health; as such no macronutrient was associated, either positively or negatively, with insulin resistance [yet].

In a more appropriately titled follow-up, Swedish pre-school children eat too much junk food and sucrose (Garemo et al., 2007 Acta Paediatrica), Garemo reported that most of their carbs came from bread, cakes, and cookies, while most of the sucrose came from fruit, juices, jam, soft drinks, and sweets.  And WOW, go figure- most of the fat came from meat, chicken, sausage, liver, eggs, and dairy; NOT vegetable oils.

And in a mammoth dissertation, Eriksson (2009) confirmed many of these findings in a larger cohort of 8-year old Swedish children and had this to say about dairy fat:

The open boxes represent overweight kids, the closed boxes are lean kids.  Going from left to right, in either the open or closed boxes, BMI declines with increasing intake of full fat milk (perhaps parents should reconsider skim milk?).  Eriksson also confirmed that saturated fat intake was strongly associated with reduced body weight.  Interestingly, she mentioned that food intake patterns are established early in life, so it might be prudent to remove sugars and other nutrient poor carb-rich foods, and introduce nutritious whole foods as early as possible.  I’m not exactly sure how she assessed patterns of food intake establishment, but it seems logical.  Especially in light of the following study… we’ve seen 4 year olds, 8 year olds, and now we have 12-19 year olds.  The relationship between diet and health is consistent across all age groups.

Virtually all of the above data in Swedish children seem to suggest dietary saturated fat, whether it’s from beef, sausage, eggs, whole fat dairy, or liver (i.e., WHOLE food sources; NOT hydrogenated vegetable oils), is associated with reduced fat mass.  Metabolic abnormalities were not present, probably because the children were simply too young (although body weight seems to respond relatively quickly, other downstream effects of poor nutrition take years to accumulate before symptoms develop).

An American study about nutrient density and metabolic syndrome was recently published.  These kids were exposed to poor nutrition for just long enough to experience some of those malevolent effects.

Dietary fiber and nutrient density are inversely associated with the metabolic syndrome in US adolescents (Carlson et al., 2011 Journal of the American Dietetic Association)

The figure below divides fiber (a proxy for good nutrition; i.e., leafy vegetables, beans, etc.) and saturated fat into groups of least and most amounts comsumed. The lowest fiber intake was 2.9 grams for every 1,000 kcal, and 9.3% of these kids already had metabolic syndrome; the highest fiber intake was 10.7 grams / 1,000 kcal and 3.2% had metabolic syndrome.  Thus, consuming a fiber-rich [nutrient dense] diet is associated with a significantly reduced risk of metabolic syndrome.

The next rows are saturated fat.  The lowest saturated fat intake was 6.9 grams / 1,000 kcal and 7.2% had metabolic syndrome; the highest saturated fat intake was 18 grams / 1,000 kcal and 6.7% had metabolic syndrome…. huh?  While it didn’t reach statistical significance, the trend for saturated fat paralleled that of a “nutrient dense” diet.  Is it possible that saturated fat might be part of a nutrient dense diet?   if saturated fat comes in the form of red meat, liver, eggs, etc., then yes, it is part of a nutrient dense diet.  This conclusion evaded both the study authors and the media.

In 4 and 8 year old Swedish children, those who ate the most saturated fat had the least excess fat mass.  In 12 – 19 year old American adolescents, those who ate the most saturated fat had the lowest risk for metabolic syndrome.

Is it too much of a stretch to connect these ideas by saying that in the short run, a low saturated fat (nutrient poor, carb-rich) diet predisposes to obesity; and in the long run it predisposes to metabolic syndrome  ???

Collectively, these data suggest a diet based on whole foods like meat and eggs, including animal fats, with nutrient dense sources of fiber (e.g., leafy vegetables) but without a lot of nutrient poor carb-rich or high sugar foods, may be the healthiest diet for children.  

Flashback: recap of “USDA vs. nutrition, round I”
USDA: 1
Nutrition: 0
They made pizza a vegetable and insiders suspect that next they’ll try to make it a vitamin.

USDA vs. nutrition, round II

USDA: replacing normal milk with low fat milk
nutrition: full-fat milk was associated with lower BMI in both lean and obese children (see the Eriksson figure above)

USDA: increasing nutrient poor carb-rich options
nutrition: this was associated with increased fat mass in children (Garumen et al., see figures above)

USDA: reducing saturated fat as much as possible
nutrition: reduced saturated fat was associated with excess fat mass in children and metabolic syndrome in adolescents.

Such changes will have an immeasurable long-term impact if children grow up thinking these are healthy options.  Finally, this blog post does not contain a comprehensive analysis of saturated fat intake and health outcomes in children, but the USDA’s new regulations should have been accompanied by one.  In other words, these regulations should not have been based on the studies discussed above, but the studies discussed above should have been considered when the USDA was crafting their recommendations.  Obviously, they weren’t.

calories proper

Holiday feasts, the freshman 15, and damage control

Holiday feasts, the freshman 15, and damage control, Op. 54

overeating ANYthing is a bad idea.  But as demonstrated in this recent study, WHAT you overeat has a big effect on how your body responds.  The overfeeding protocol studied was pretty intense, ~1000 excess kilocalories per day for 8 weeks.

Effect of dietary protein content on weight gain, energy expenditure, and body composition during overeating (Bray et al., 2011 JAMA) Healthy people where fed hypercaloric low, medium, or high protein diets.  It’s impossible to isocalorically change one macronutrient without inadvertently changing the others.  With regard to study design, this is always a tough decision, and in this study they exchanged protein for fat:

Divide and conquer

As seen in the monster-table above or simplified table below, the high protein group gained the most weight despite eating no more than the other groups; but this weight was comprised of significantly more lean body mass than in any other group. 

High protein dieters also expended more energy but still gained more weight!  Importantly, however, much of that weight was muscle.  The increase in energy expenditure is likely due to dietary protein-specific effects: 1) high metabolic cost of increased protein turnover, 2) elevated metabolic rate associated with more muscle, and 3) increased diet-induced thermogenesis.  The low protein group, on the other hand, lost muscle and gained more fat than any other group.

an aside: the energy expenditure measurements taken during overfeeding should be taken with a grain of salt, shot of tequila, and suck of a lemon because the accuracy of such measurements usually require weight-stable conditions; overfed subjects were gaining weight and in positive energy balance.  In other words, the assumptions required for doubly-labeled water to assess energy expenditure during weight-stable conditions are likely not met during weight gain (which is further complicated by the fact that the different groups were gaining different types of body weight [fat vs. fat-free mass]).  But the body composition data are probably OK (see below).

Furthermore, while it may seem like the Laws of Energy Balance were violated in this study, I assure you, they were not.  This study was not designed to test them, as evidenced by the author’s failure to conduct a comprehensive assessment of energy balance.

The high monetary cost of high protein foods (e.g., steak) is matched by the high energetic cost of their assimilation.  By increasing protein intake, energy expenditure rises in parallel.  This is most likely due to a combination of factors (mentioned above), and the result, at least in this study, is increased lean body mass.   The low protein diet, on the other hand, didn’t increase energy expenditure and resulted in more fat gain.  N.B. the absolute amount of protein consumed by the low protein group (47 grams) was too low to maintain muscle despite ingesting 40% more total calories.  In other words, the low protein dieters actually lost muscle mass while gaining fat!!

conclusions

1. THE media always screws up things (no thanks to Dr. Bray’s discussion).  The headlines should’ve read: “Dietary protein increases lean body mass more than total calories increase fat mass.”  That headline would’ve taken the focus away from the calorie debate by highlighting an important macronutrient effect.  This is important, IMHO, because body composition is a very important factor determining metabolic outcomes and quality of life, and is often overlooked (e.g., BMI).

2. While excess calories are necessary to increase lean body mass, excess protein has little effect on fat mass.  “Excess protein has little effect on fat mass” would’ve been another great headline.  But it wasn’t.

Most of the excess energy consumed by the low protein dieters was stored as fat, while in the high protein dieters it was invested in muscle and burned off.  Although it’s a little too late to prevent holiday feast-induced weight gain (or the freshman 15 for that matter) these data suggest that whenever possible, filling up on the highest protein foods available will cause the least fat gain.  Increased dietary protein -> increased lean body mass –> increased metabolic rate (you burn more fat in your sleep!)

Dietary protein doesn’t require a prescription and is a potent nutrition partitioning agent.  But as mentioned above, WRT energy balance, this study was not perfect.  So, why do I believe the effects of dietary protein are true despite the methodological flaws in Dr. Bray’s assessment of energy balance?  Because they are consistent in a variety of conditions.  For example, the remarkable effects of a high protein diet on body composition prevail even during underfeeding (aka going on a diet), a completely opposite paradigm.

Skov and colleagues tested hypocaloric high vs. low protein diets for 26 weeks and confirmed that even during negative energy balance, dietary protein favors lean body mass at the expense of fat mass (Skov et al., 1999 International Journal of Obesity)

And similar results, albeit less robust due to the shorter duration, were found in a study by Layman and colleagues in as few as 10 weeks (Layman et al., 2003 Journal of Nutrition)

During overfeeding, high protein diets cause greater increases in lean body mass and energy expenditure, and prevent excess fat accumulation relative to low protein diets.  During underfeeding, high protein diets lead to a greater retention of lean body mass and more fat loss.  Nutrient partitioning 101. All calories are not created equal.

or


??

 

For the rest of this article and I promise it doesn’t suck ???? head over to Patreon! Five bucks a month for full access. It’s ad-free and you can cancel at any time.

If you’re interested in setting up consultations with me, reach out: drlagakos@gmail.com.

Affiliate links: Still looking for a pair of hot blue blockers? TrueDark is offering 10% off HERE and Spectra479 is offering 15% off HERE. If you have no idea what I’m talking about, read this then this.

 Join Binance and get some cryptoassets or download Honeyminer and get some Bitcoins for free

20% off some delish stocks and broths from Kettle and Fire HERE

If you want the benefits of  ‘shrooms but don’t like eating them, Real Mushrooms makes great extracts. 10% off with coupon code LAGAKOS. I recommend Lion’s Mane for the brain and Reishi for everything else

Join Earn.com with this link.

Start your OWN Patreon campaign!

calories proper

Fructose vs. The Laws of Energy Balance

Exclusively from literature featured in past blog posts, e.g. HERE and HERE, excessive fructose consumption seriously deranges metabolism.  Furthermore, fructose pre-disposes to and exacerbates leptin resistance, which is one of the most proximal causes of obesity viz. overeating.  However, this doesn’t exonerate processed foods, modern grain-based diets, or trans-fats because they frequently co-exist.  Many popular breakfast cereals contain all three, and IMO a fructose-free breakfast cereal wouldn’t do much in the treatment and/or prevention of obesity.  Just eat better.  And we might even get “low-fructose” foods on grocery store shelves in the near future (but don’t hold your breath, food companies LOVE their fructose).

Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans (Stanhope et al., 2009 Journal of Clinical Intervention)

Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women (Cox et al., 2011 European Journal of Clinical Nutrition)

Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-h glucose and insulin excursions (Stanhope et al., 2011 American Journal of Clinical Nutrition)

These studies came out in a few separate publications, were ultra-high budget, and used very advanced techniques to quantify energy expenditure and body composition.  AND much care was taken to ensure the subjects were truly weight stable when appropriate (inpatients for two weeks in the beginning and end of the study so all of their food intake and anthropological measurements could be assessed accurately).  The experiment consisted of feeding subjects a sugar-sweetened beverage, either glucose or fructose, equivalent to 25% of their daily energy requirements.

During the inpatient portions, subjects were fed a standardized diet of 15% protein, 20% fat, and 55% carb:

Note the differences in GI & GL (bottom two rows).   Fructose has a negligible impact on glycemia because, well, it’s fructose (not glucose), and it doesn’t magically transform into glucose after ingestion.

When left to their own free will, the patients pretty much ate the same:

In general, after a period of adaptation, their intake of other foods should have declined by 25% to compensate for the additional calories from the sugar drinks, but sugar seems to hijack the appetite set point – first row in the table above; calories were 20-25% higher, almost the exact amount of calories in their sugar drinks – therefore all subjects gained a few pounds (1% of initial body weight) (and then they went back on good behavior when they were being observed in the metabolic ward):

Herein we have the first unexpected pearl: the fructose group gained visceral fat (VAT) whereas the glucose group gained subcutaneous fat (SCAT) (eerily similar to what is seen with trans-fats!).

Exhibit A:

The glucose group actually gained slightly more fat mass than the fructose group, but most of the excess weight was deposited in the relatively inert SCAT, or “extraabdominal” regions.  The fructose group, on the other hand, gained it all in VAT (apple, not pear).  Abdominal fat and waist circumference increased significantly in the fructose drinkers.  FYI that is very interesting.  And it wasn’t caused by individual differences- it’s not like some people were more predisposed to gain more VAT than SCAT; these subjects were randomized.  Diet, or more specifically, dietary sugars caused this differential fat storage.  Amazing.

Exhibit B:

This figure shows the differences in fat gain.  The glucose group gained less VAT than SCAT, while the fructose group did the opposite.  Genetics had nothing to do with this.  It is diet.  It is nutrition.  For the love of God people, it is nutrition.

In lieu of the recent publication by Dr. Bray, it is interesting to note the second pearl: an example of the irrelevance of the laws of thermodynamics (universal) with respect to the Laws of Energy Balance (conjured up by yours truly).  Namely, energy expenditure is affected by the diet… IOW, the laws of thermodynamics are not violated, but all calories are not equal (THERE. I said it… on the record, in cyberspace, for all of eternity).

This nuance is introduced in figure 2:

Divide and conquer

On the left, fat oxidation is slightly lower in the glucose group.  This is expected, because carb oxidation should have increased due to the increased carb consumption (in the form of the glucose drink).  But as seen in the right panel, fat oxidation declined significantly in the fructose group.  From this, we would expect fat gain to be greater in the fructose group compared to the glucose group … but it wasn’t.  Artefact?  Error in measurement?  I don’t know how, but this appears to be a violation of the Laws of Energy Balance (which is impossible).  UNLESS energy expenditure declined more in the fructose group than in the glucose group.

Exhibit C:

And it did!  Both groups increased their sugar consumption (by design), and energy expenditure declined in both groups (they all gained weight).  The fructose group gained about a pound less than the glucose group, but consumed slightly fewer calories on average.  So the reduced fat oxidation didn’t enhance fat gain in the fructose group because food intake declined proportionately; and they maintained energy balance relative to the glucose group because energy expenditure was slightly lower (this is complicated).

To be clear, the fructose-induced VAT deposition is not explained by reduced fat oxidation as that would imply less fat gain overall, relative to the glucose group (which didn’t happen).

Fructose-induced VAT deposition is a product of the deranged nutrient partitioning caused by fructose itself.  It’s a dangerous lil’ bugger.  How does fructose conspire with the metabolic machinery to selectively enhance visceral adiposity?  Not sure, but it might have something to do with insulin.  Glucose but not fructose stimulates insulin secretion, and SCAT is more sensitive to the anti-lipolytic effects of insulin than VAT.  The overall fat gain was similar in both groups, in accord with the Laws of Energy Balance.   But insulin tends to drive fat into metabolically safer SCAT.  An example of this concept in practice can be seen by looking at obese insulin resistant people.  In this population, SCAT is less responsive to insulin, relativeto lean people, and indeed, they have significantly greater visceral fat mass.  So fructose doesn’t trigger an insulin response, which means excess calories are less likely to be stored in SCAT, but since this can’t violate the Laws of Energy Balance the calories must go somewhere…  deposited into the notorious VAT bank where they not only still make you fat but also initiate a storm of metabolic abnormalities.

 

calories proper

pizza on the docket

they’re all crooks!

or

a slice of pizza does not count as a serving of vegetables. Period.

not the worst thing for you, really just a bunch of empty calories.  definitely NOT a serving of vegetables.

The government-sponsored school lunch program is designed to provide nutrition and improve the health of our children.  And they get around 11 billion dollars (i.e., $11,000,000,000) every year to do so.  Due to the recent surge in obesity, Congress acted fast!  School lunch programs do not closely follow the dietary guidelines.  To us taxpaying voters, $11,000,000,000 of our taxes are being wasted AND our kids are suffering.   Therefore, Congress quickly changed the status of pizza to “vegetable.”  Many schools serve pizza, and thus are now more closely in line with the dietary guidelines; so our taxes are being less-wasted and our children are healthier because they are eating more vegetables! To be clear: now that pizza is a vegetable, your children are healthier.

You can’t make this shit up – it is what happens when government gets involved in nutrition.  Please, ignore the Dietary Guidelines, they are horribly misguided.  And be extremely wary of electing anyone who wants to control nutrition; or vote with your dollars, don’t buy processed food!  The message is almost always wrong and both our bank accounts and our health suffer the consequences.  I would suggest supporting nutrition education programs, but NOT IF THEY SAY PIZZA IS A VEGETABLE.  If anything, a slice of pizza should count as dessert plus 3 servings of grains :/

Isn’t it bad enough that French fries, or crisps, count as vegetables?

Admittedly, claiming “the Dietary Guidelines are horribly misguided” is a strong statement, especially when said guidelines direct how a portion of our taxes are spent AND which foods are made available to our children.  This is important.

 

calories proper

 

Become a Patron!

 

 

Save

QLSCD II (or Grains IV)

WRT the Quebec Longitudinal Study of Child Development (QLSCD), I failed to adequately emphasize one major implication of their findings.  It is a point that completely and wholly illustrates the disconnect from data, empirical science, and all common sense exhibited by mainstream beliefs in calories and dieting.   gravitas

Higher intakes of energy and grain products at 4 years of age are associated with being overweight at 6 years of age (Dubois, Porcherie et al., 2011 Journal of Nutrition)

Divide and conquer

Exhibit A

 

The table above shows the percentage of underweight, normal weight, and overweight children consuming the recommended number of servings for each food group.  15.5% of underweight children, 19.1% of normal weight children, and 42.6% of overweight children meet the recommended ?5 servings of grains per day.  Grains comprise [sic]: “breads, pastas, cereals, rice, and other grains”

There is a direct relationship between body weight and the percentage of children consuming ?5 servings of grains per day, i.e., more grains equals greater chance of being overweight.

Exhibit B

 

This table shows the odds for being overweight at 6 years of age in increasing quintiles of how many calories consumed daily two years earlier.  The crude odds risk (first column) shows a poor relationship between calorie intake at 4 years old and risk of being overweight 2 years later.  I say “poor” because the risk is non-significantly lower in the second quintile, higher in the third, lower in the fourth, but much higher in the fifth quintile (3.15x more likely to be overweight for the biggest eaters compared to the littlest eaters).  These data are unadjusted and could be confounded by a variety of factors.  Thus, the significance level of the trend is high p=0.0007.

The second column is similar to the first, but is adjusted for many known confounders: birth weight, physical activity, mother’s smoking status during pregnancy, annual household income, and number of above normal weight parents.  As such, the degree of statistical significance was reduced from 0.0007 to 0.001.

The third and most important column is further adjusted for body weight at 4 years of age, and shows that calorie intake is no longer associated with body weight at 6 years of age.  In other words, being overweight at 4 years old predicted being overweight at 6 years old better than calorie intake (and physical activity).

In the authors’ own words [sic]: “The only food group significantly related to overweight was grains.”  No association was observed for overweight risk with vegetables and fruits, milk products, or meat and alternatives.

IMHO, the observation that being overweight at 4 years old was the best predictor for being overweight 2 years later is remarkable… body weight status at 4 years old is a more important risk factor than both physical activity and calorie intake.  The only ‘controllable’ variable  is grains; i.e., you can’t change whether or not your child was overweight at 4 years of age, and physical activity and calorie intake doesn’t matter.  But grain consumption seems to matter, and it is something that can be controlled.

What is it about grains?  I don’t know, exactly, but it’s not simply that they’re carbohydrates because elevated carbohydrate intake didn’t increase risk for being overweight.

Exhibit C

 

 

“Eating less and moving more” is not the answer.  Nutrition matters, not the guidelines.

 

calories proper

 

 

Glycemic index revisited, again, etc.

The glycemic index (GI) ranks foods based on how high 100 grams (~3.5 oz.) of them make go your blood sugar.  Dietary simple sugars like sucrose (table sugar) and glucose (e.g., Gatorade) have high GI’s because they are quickly digested and absorbed.  Fats and proteins register low on the GI because, well, they don’t provide any glucose.  Complex carbohydrates and fibres are intermediate.  And most important, mixed meals have a low to intermediate GI.  It was once dogma that only high GI foods caused weight gain, but a plethora of somewhat disappointing studies have shown that 1) a low GI diet doesn’t protect lean people from weight gain, and 2) switching from a high to a low GI diet doesn’t facilitate weight loss.  Glycemic load (GL) was then introduced which incorporates the amount of the food consumed, such that low GI foods could have a high GL if enough was eaten at once.  This fared slightly better than GI, but in the end, the total amount of carbohydrates turned out to be more important than the type of carbohydrates. IOW, WRT glycemia and body weight, quantity outweighs quality.  But that doesn’t stop the researchers from testing it … over and over again (on the taxpayers dime!).  In their defense, epidemiological studies have demonstrated a very modest relationship between GI/GL and disease risk, just not with body weight, adiposity, etc.

For example,

Substituting white rice with brown rice for 16 weeks does not substantially affect metabolic risk factors in middle-aged Chinese men and women with diabetes or a high risk for diabetes (Zhang et al., 2011 Journal of Nutrition)

I like this study for its practicality.  It is a real-life, highly “do-able” intervention, which is usually a critical concept in interpreting and applying the results from dietary intervention studies.  Switching out white rice for brown rice, easy enough!  The entire population was Chinese, who ingest phenomenal amounts of rice anyway (>30% of total calories… daily!), so attrition was not a problem.  And as wonderfully illustrated in the chart below, making the switch for 4 months had no effect whatsoever (see the P-values in the far right column).

 

 

LDL cholesterol went down slightly more in the white rice group, but this is biologically insignificant.  All other metabolic parameters were unchanged.  For those who like to nit-pick, BMI went down slightly more in the brown rice group while waist circumference went down slightly more in the white rice group, meaning that body composition may have been more favorably affected by white rice :/

This study is reminiscent of a much larger and more important one by none other than Willett and his Harvard cronies in a population of Brazilian women:

An 18-mo randomized trial of a low-glycemic-index diet and weight change in Brazilian women (Sichieri, Hu, Willett et al., 2001 AJCN)

This study was of a similar design; although they targeted both GI and GL.  The intervention was more robust; there were much bigger dietary differences between the groups, probably because Willet’s crew has virtually unlimited resources, but this didn’t change the outcome.  Total carbohydrate (60% of kcal), fat (27%), and protein (13%) intakes were the same but GI and GL were almost 3 times greater in the high GI (HGI) group compared to the low GI (LGI) group.  FTR, “3 times” is a really big difference… IOW, if GI or GL had any effect whatsoever, they would have detected it from a mile away.

For those who were wondering what exactly comprises a low or high GI diet, a sample menu was provided:

As seen in the table below, there were no dietary differences other than GI & GL between the groups (meaning it was a well-controlled intervention; kudos):

And as illustrated in the figure below, GI and GL had no effect on body weight:

N.B. the scale of the abscissa- it encompasses one kilogram (2.2 pounds); thus, it should look more like this:

Anyway, it looks like both groups lost a LOT of weight, but really their body weight declined very slightly by about 1-2 pounds, then slowly creeped back up (over the course of 18 months).  AND for those nit-pickers, it looks like the low GI group ended up slightly heavier! (not really, as the difference was very small and statistically insignificant). IMHO, WRT GI & GL, the Willet study is compelling.  It was of the highest quality study design: a randomized, controlled, intervention (as opposed to less conclusive or meaningful epidemiological, observational, cross-sectional, etc., studies).  So what was the rationale to re-test GI & GL in a much smaller study with a weaker intervention (brown vs. white rice)?  Beats me!  But the notion that a low GI or GL favorably affects body weight will not go away.  Carbohydrate quantity not quality is the major determining factor.

AND as blogged extensively on HERE, potato chips were the most obesogenic foods in one hyooge study.  potato chips have a relatively low GI, around 55.

 

calories proper

 

 

 

 

 

 

 

 

 

 

 

 

Nutrition under attack

Global nutrition is in a state of emergency

Tax this:

Not this:

 

If you catch a whiff of anyone talking about a dietary fat tax here in the states, attack!  Hold no bars.

Passage of the Danish saturated fat tax confirms the shit hit the fan.  They should’ve taxed people for being fat (to offset the increased medical and healthcare costs associated with obesity), or sugars (for making people fat).  Instead, the food companies, famous for crafting thousands of varieties of Danish pastries, lobbied for the taxes to be levied against dietary fat.  This “inadvertently” encourages people to consume more Danish pastries with only 7 grams of saturated fat yet 39 grams of sugar!  The tax will favor Pop Tarts over eggs, and this is supposed to make people healthier?

A dietary fat tax is particularly troublesome because it strikes an expensive blow against real whole foods like eggs, butter, and meat, while leaving unscathed processed foods like doughnuts, refined grains, and SUGAR.  This disproportionately affects healthy foods that are in no way responsible for the obesity epidemic.

My suggestions:

1)      Leave people alone.

2)      A better target, which would entail markedly less collateral damage, is “added” sugars.  Taxing “added” sugars would hit soda, processed food-like products, snacks, and junk food… lots of bad guys, few good guys

3)      Make a tax based on empty calories: foods with a higher ratio of calories to nutrients get taxed more than nutrient-dense foods… thus, people would be eating fewer calories but more nutrients!  That wasn’t too hard?

4)      Tax food in direct proportion to its shelf-life.

5)      The revenue from any of these alternative options should be put toward nutrition education programs in elementary schools.  And a portion of the money saved in healthcare costs should be redirected into funding research in the nutritional sciences.  And the rest can be used to pay off the National debt.

 

Calories proper

 

Empty calories V

The final horcrux!  Empty calories induce a feed-forward loop that promotes  over-consumption. … the following evidence is indirect, of course, but very compelling.

Food intake measured by an automated food-selection system: relationship to energy expenditure (Rising, Ravussin, et al., 1992 AJCN)

This study was designed to validate a new technique for measuring food intake; it had nothing at all to do with “empty calories.”

10 lean, healthy young men.  During a 4-day run-in period, the amount of calories required to maintain energy balance was measured with extreme precision.  Then for 7 whole days, they lived in a metabolic ward and dined from … wait for it … “vending machines.”

 

The vending machines were loaded with entrees, snacks, and beverages, [sic]: “familiar and preferred foods,” aka a “cafeteria diet.”  And I was delighted to see they also published the menu:

 

This study fit so perfectly because the Empty Calories series’ singular major thesis is: empty calories promote over-consumption.  And this can be tested by examining the two logical extremes: 1) a diet devoid of empty calories is inherently healthier, and any increase in the amount of empty calories consumed is accompanied with a decrease in health outcomes; and 2) eating more empty calories will not be balanced by eating less of something else, because empty calories are nutritionally bankrupt and do not affect satiety proper.  And this menu, oh yes, is almost entirely empty calories.

The researchers purposely filled the vending machine with individually packaged processed foods because of their convenience; it’s a very easy way to measure food intake, which was the focus of their study.

The following figure is absolutely nuts; you couldn’t make this stuff up.  like it was mathematically designed to support the Empty Calories credo.

 

It started immediately on day 1 of “ad libitum intake;” food intake doubled- the food was so nutrient poor that twice as many calories were necessary to satisfy their appetite.

Where did all those excess “empty calories” go?  Some (~17%) were spontaneously burned off (increased 24h EE) but most were invested in the infamous negative-yield* calorie savings banks (i.e., adipose).  [*you don’t get back more than you invested].

 

Side note: check the numbers, an overconsumption of 10975 kJ/d = 2622 kcal.  For 7 days = 18,353 kcal; which is approximately the amount of energy in 5.2 pounds (2.4 kg) of fat tissue.  They gained 2.3 kg, just a hair less than mathematically predicted (so much for spontaneously burning off 17% of the excess).  Body composition was not measured, but given the huge increase in carbohydrate intake, I imagine insulin levels were through the roof driving all of the excess energy into fat mass.

This has been confirmed numerous times.  For example, Larsen et al. (1995):

 

When fed the “cafeteria diet” from vending machines, these women almost doubled their food intake and gained a full pound of fat in under a week.  But I digresss.

“And this can be tested by examining the two logical extremes: 1) a diet devoid of empty calories is inherently healthier, and any increase in the amount of empty calories consumed is accompanied with a decrease in health outcomes; and 2) eating more empty calories will not be balanced by eating less of something else, because empty calories are nutritionally bankrupt and do not affect satiety proper.”

The second postulate has been addressed and sufficiently supported by Ravussin’s vending machine study (above).  Fortunately for us a study that addressed the first postulate was blogged on previously.

 

Remember now?

(Hashim and Van Itallie, circa 1965)

 

When fed a bland yet nutritionally complete diet, obese subjects spontaneously and drastically reduced their food intake, and body weight plummeted for EIGHT STRAIGHT MONTHS.  Although this was confirmed a decade later by Cabanac and Rabe (1976), it only indirectly supports the first postulate because it was not real food.  But it proves the point that nutrient sufficiency supports satiety, and this can be dissociated from total calorie intake.  IOW, if the diet provides the essential nutrition, then the remaining daily energy requirement can be met by burning excess fat mass stored in adipose tissue.

avoid ‘empty calories’ and cash out

 

calories proper

 

 

 

 

Empty calories IV

Welcome to the fourth installment, empty calories in everyday life

on feeling “full”

fullness can be manipulated by a variety of things, but never truly fooled.  Try drinking a fiber-rich beverage (e.g., Metamucil) right before mealtime and then eat slowly… you will feel full much sooner.  This may even cause you to eat less, but it won’t last … it’s not an effective long-term weight loss or weight maintenance strategy.  and it might even do harm… fiber makes you feel fuller faster by expanding (absorbs water) in your GI tract- it will stretch out your stomach a bit.  When you run out of it, or decide enough is enough, your stomach will feel emptier than usual, which will increase the amount of food necessary to make you feel “full.”

In the example above, that fiber drink would be considered to have a very low energy density.

on energy density

“Energy density” is bunk.  Ha!

But really, advising someone to consume a “low energy density” diet is wrong.  The rationale underlying “low energy density” diets is that fat, the macronutrient, contains 9 calories per gram, whereas carbohydrates only have 4, less than half.  Thus, there is >2x the amount of energy contained in a gram of fat than in a gram of carbs, i.e., fat is more energy dense.  However, when it comes to real food (food, not macronutrients), things change.  E.g., crackers are promoted as a healthy snack for low energy density dieters because crackers are very low fat (4% by weight) and thus low energy dense.  Red meat, on the other hand, has a high energy density (fat content 20-30% by weight)…  but wait, are those statistics referring to macronutrients … or food?

100 grams of crackers can have anywhere from 393 (Saltines) to 492 (Ritz) kilocalories, but 100 grams of red meat has 258 (Porterhouse) – 332 (ground beef) kcal.  Since things like water content vary widely among different foods, the energy density of macronutrients is not the same as that of the foods we actually eat.

on snacking

Think of a meat-eater you know.  Regardless of how much they love steak, they couldn’t eat it until they were sick.  But watch a little kid eating snacks, for example.  especially kids, who are more vulnerable than adults to obesogenic foods.

Most non-animal food sources (rice, pasta, beans, potatoes, etc.), including snacks, lack one or more nutrient or essential amino acid and are therefore considered nutritionally inadequate.  WRT to nutritional deficiencies: for practically every nutrient, the “at-risk for deficiency group” is almost always vegetarians (and/or alcoholics).

Snacks and plant-based foods are nutritionally incomplete; we might overeat them because of this.  Perhaps protein, EFA, & nutrient sufficiency is detected by the satiety systems in our brain.

It is difficult but not impossible to eat a nutritionally adequate vegetarian diet (sans industrial fortification), but it’s practically impossible to be nutritionally insufficient if a small variety animal foods are included in the diet (eggs, red meat, salmon, chicken, etc.)… low chance of success in the former vs. low chance of failure in the latter?

A can of Pringles has more calories than a dozen eggs (900 vs. 852 kcal).  But it’s virtually impossible to eat a dozen whole eggs, partially because that’s gross, but also possibly because just a few eggs provide more than enough nutrition to signal into the satiety system.  IOW, it’s much easier to overeat empty calories.

Snacks make people fat, in part, because they are designed to be tasty but provide little nutrition.  If snack foods provided adequate nutrition, they would satisfy our hunger and we’d eat [and buy] less.  The tasty flavors make us want and like them, and the lack of nutrition prevents us from becoming satiated.

Nutrient density FTW.

 

calories proper