Category Archives: Dietary fat

Circadian arrhythmia in different types of obesity

This study was pretty interesting.

Three groups of women:

1) normal weight

2) gynoid obesity (stores more fat in hips & butt), defined by WC/HC < 0.85

3) android obesity (stores more fat in belly, which is rare in women), defined by WC/HC > 0.85

 

First, we get confirmation that insulin sensitivity (IS) is better in morning than evening.  But then we get these interesting glucose tolerance curves:

 

circadian-glucose-tolerance

 

Fat stored in your hips & butt is thought to be healthier than that stored in your belly region.  This is confirmed here.  Gynoid obesity, while exhibiting an attenuated AM/PM difference, was able to restore euglycemia by the end of the experiment at both time points.  Ie, gynoid obesity selectively improved IS in the evening.

 




 

Android obesity, which is more nefarious than gynoid (also confirmed here), had a similar though not as robust effect in the evening but deteriorated IS in the morning.

One potential interpretation: it’s better to have a little extra fat stored in your hips and butt than to be lean or have belly fat.  However, I have a qualm with that interpretation.  Healthy people show a robust circadian difference in glucose tolerance.  Just as insulin resistance (IR) is an accepted physiological phenomenon observed in some ketogenic dieters, I view this circadian difference, also, as physiological.

 

Continue reading

Alcohol on keto

This article isn’t about alcohol tolerance.  It’s about your liver.

Tl;dr: with a basic knowledge about alcohol metabolism and ketoadaptation, drinking on keto gives me pause.

It might be nothing, but it gives me pause.

Alcohol is metabolized primarily by alcohol dehydrogenase, producing acetaldehyde and reducing equivalents as NADH.  This pathway produces energy.

Continue reading

Ketones, carbs, and physical performance.

Or more specifically, ketone monoesters and carbs.  Literally, this study was a high-dose ketone monoester supp sans caloric or carb restriction.  I know, weird right?

 

Ketone ester

 

Non sequiter nutrition notes, #context, etc.:

1) ketone esters =/= ketone salts.  Ketone salts are either sodium or potassium-dominant.  Ketone esters are essentially salt-free.  Possibly helpful background reading here.

2) nutritional ketosis =/= starvation ketosis =/= ketone supp ketosis.  Because #context.

Starvation ketosis, but not nutritional ketosis, is muscle-sparing.  Ketone supps sans carb restriction might be.

3) the theory of ketone supps for sport is: 1) ketones are an energetically favorable fuel; and 2) they’ll spare glycogen, theoretically allowing prolonged duration of moderate-to-high intensity performance.  Adding in carbs will likely further this.

4) I have no studies to support this, but the idea of ketone supps in the #context of high carb doesn’t sit will with me.  Seems like high levels of both substrates = mitochondrial overload and oxidative stress.  Maybe.

5) there’s a gradient of fuel use during exercise:

-explosive power: creatine, anaerobic

-high intensity: glycogen, anaerobic

-low intensity: fatty acid oxidation, aerobic

But it’s a gradient with a lot of overlap, and ketoadaptation further blurs the lines.

 

Continue reading

Long-term fat adaptation

Recent comments about FASTER have upgraded this study to “the only long-term study on fat-adaptation.”  Needless to say, I disagree.  Again.

Side note: FASTER had no randomization or intervention (ie, confounded by selection bias, among others); they basically recruited long-term low carb & high carb ultra-endurance runners and measured the stuffings out of ’em.

Ultimately, they showed a very high maximal fat oxidation rate in low carb ultra-runners, 1.5 grams per minute.  This is important because MAXIMAL HUMAN FAT BURNING CAPACITY

 

TROGDOR the BURNiNATOR

 

In previous studies on SAD (Standard Athletic Diet haha), maximal fat oxidation at similar VO2max% has been reported to be much lower, <1 g/min (eg, Hetlid et al., 2015 and Volek et al., 2016).

 

Continue reading

Keto-Crossfit

Study: a handful of average-bodied Crossfitters in their mid-30’s were recruited and told to either: 1) keep doing what they’re doing; or 2) go full keto.  Crossfit 4x/week.   Strength testing before and after 6 weeks (Gregory et al., 2017).

I’ll start with the best part: KETOADAPTATION IS A REAL TRUE THING THAT WORKS (P<0.05).  Otherwise, this group’s performance would’ve plummeted.  It is known.

The performance test was time to complete a 500-meter row, 40 body weight squats, 30 abdominal mat sit-ups, 20 hand release pushups, and 10 pull-ups.

Tl;dr: both groups knocked about a half a minute off their time!

The key here is duration: 6 weeks of ketogenic dieting is adequate to restore performance back to baseline.  <3 weeks is not.

 

performance

 

Here’s the downside (sort of):

 

body comp

Basically, the keto group dropped carbs and failed to compensate by upping other calories.  I know I know, spontaneous ad lib appetite reduction, but this is a study on PHYSICAL PERFORMANCE.

 




 

And in further support of “muscle growth sans carbs,” keto dieters upped protein by 15% and this still wasn’t enough to compensate for the reduction in carbs/insulin: they still lost a bit of lean mass (NS).  Imagine if they hadn’t increased the brotein? yikes

 

food

 

so basically, they lost body fat because CICO and retained lean mass because exercise and protein haha jk

 

Admittedly, it was cool to see the body comp changes, but we know fat loss eventually plateaus and people start eating maintenance calories again (maybe a bit more if Ebbeling can be believed).  And this is where they remain for the rest of their lives (hopefully).  So at 6 weeks, they were still losing weight, nowhere near where they’re going to be for the rest of their lives, but THAT’s where I’d like to see performance testing (ie, at a stable body weight).  Don’t get me wrong, I hate myself in advance for making this critique: the researchers should’ve pushed more calories in the keto dieters bc this is a confounder in a study on PHYSICAL PERFORMANCE…  but this doesn’t really matter in the big scheme of things because Blackburn’s group did that and showed the results were the same haha

 

 

On another note, I don’t think people should expect an additional performance boost from being more ketoadapted (or more fat-adapted or whatever), primarily because whether the study is 3 weeks or 6, performance never really gets better than baseline in experienced athletes.  With more advanced training techniques, sure (and I think this is common), but not more keto- or fat-adaptation.

For full access to all articles and much more (or if you just like what I do and want to support it), become a Patron! It’s three bucks a month and there are many other options. Sign up soon because there are only a limited number of spots left at the $3 level. It’s ad-free and you can cancel if it sucks ????

Also, I’m open to suggestions, so please don’t hesitate to leave a comment or contact me directly at drlagakos@gmail.com.

Affiliate discounts: if you’re still looking for a pair of hot blue blockers, Carbonshade  is offering 15% off with the coupon code LAGAKOS and Spectra479 is offering 15% off HERETrueDark is running a pretty big sale HEREIf you have no idea what I’m talking about, read this then this.

20% off some delish stocks and broths from Kettle and Fire HERE

If you want the benefits of  ‘shrooms but don’t like eating them, Real Mushrooms makes great extracts. 10% off with coupon code LAGAKOS.

 

calories proper

Become a Patron!

 

 

Insulin resistance and obesity

Some people believe insulin resistance (IR) causes obesity, and they are not pleased when I say this is actually a controversial topic in the field…

“Bill isn’t toeing the company line.  Again.”

So I asked a simple question: if IR causes obesity, how?

 

 

The Common Response: 1) IR -> 2) hyperinsulinemia -> 3) more insulin = more fat mass.

However, this is flawed.

Easiest rebuttal (somewhat of a strawman, but whatevs): Barbara Corkey and her group has done a lot of work showing that insulin hypersecretion (caused by dietary additives, preservatives, weird chemicals, etc.) may actually precede & causes IR… not enough insulin hypersecretion to induce hypoglycemia, just enough to induce IR.

So that basically breaks the 1st step in the Common Response, but doesn’t really disprove the possibility that IR still causes obesity (or can cause obesity).

In any case, check out Corkey’s 2011 Banting Lecture.  Highly recommended, a lot of food for thought.

 

Continue reading

Hey CICO, I’m playing by your rules.

Brief background: the notorious Ebbeling study of 2012 showed an apparent metabolic advantage of a ketogenic diet.  After losing some weight, participants were assigned to low fat (LF), low GI, or ketogenic diets.  As expected, energy expenditure (EE) declined in all groups after weight loss.

 

Continue reading

the insulin-obesity hypothesis is under attack

…but it isn’t dead, imo, because that would be really hard to do.  Like, seriously.

 

 

side note: please consider the modern views of Taubes, Lustig, Gardner, Attia, and others on Carbs™.  They’re less “Carbs-cause-obesity, keto-for-all, etc.,” and more thinking it might not be Carbs™ per se, but rather processed and refined foods.  And #context…  And I tend to agree at the moment (nuances and caveats are subject to change, as more evidence accumulates).

 

disclaimer: I haven’t seen the full text of Hall’s recent study, but that’s not really relevant to what I want to discuss.  In other words, I don’t think the full text will provide any additional details on this particular point.

 




 

Tl;dr: this study was not designed to prove or disprove metabolic advantage or the insulin-obesity hypothesis.

It’s in the study design:  four weeks of low fat followed by four weeks of low carb.  We KNOW that weight loss slows over time (especially if calories are controlled, as they were in this study).  It has to do with the order of treatments.

Weight loss-slowing over time in the Minnesota Experiment:

 

 

Minn-Starvation-weight

 

Continue reading

Insulin resistance is a spectrum

The history of low fat diets is riddled with crappy low fat food-like products.

Food quality matters.

Free full article on Patreon! <- link

Take a group of obese people and assess insulin sensitivity however you like: some researchers demand nothing less than a hyperinsulinemic-euglycemic clamp (Gold Standard), others are OK with insulin levels during an oral glucose tolerance test.

Next, divide the people up based on this — there are a few ways you can do it.  You can: take the top half vs. the bottom half (a method which includes everyone); take the top third vs. bottom third (excluding the middle third); take the top quarter vs. bottom quarter (excluding the middle 50%), etc.

THIS MATTERS because in referencing this topic, many people claim most obese are insulin resistant.  They may be more insulin resistant than lean people, but even within obese people, there’s a spectrum, and the spectrum matters in this #context.

 

Continue reading

Rodent keto studies

Next time someone says VLC/keto is harmful or at least not helpful for fat loss because of a new rodent study, they’ll probably be wrong.

BOOKMARK THIS ONE GUYS.

Rodent studies on ketogenic diets or exogenous ketones are valuable and interesting in a variety of #contexts, although I’d argue that regulation of fat mass isn’t really one of ’em.

For starters, rodents aren’t particularly ketogenic – it’s rare to see ketones >1 after an overnight fast even in long-term ketoadapted mice.  Also, many rodents gain weight until they die, whereas humans plateau and stay relatively weight-stable for their entire lives (at least historically, and I’m not talking about yo-yo dieting).

Skeletal muscle, on the other hand, seems more similarly regulated: keto isn’t muscle-sparing in either specie… most people, perhaps unwittingly, increase protein intake on keto, and THIS spares muscle (N.B. this is simply to spare muscle, whereas in non-keto dieters, it’s not uncommon to see increased muscle in the #context of high protein).  That’s because carbs are more anabolic than fat.  QED.

There’s just a fundamental difference in the way fat mass and appetite is regulated between the species.  There are many similarities, which is why these studies are still valuable, but fat mass isn’t one of ‘em.

Continue reading