Tag Archives: melatonin

LIGHT, Leptin, and Environmental Mismatch

For a long time, the melanocortin system was basically thought to control the color of skin and hair.  It still does, and many redheads are redheaded due to polymorphisms in one of the melanocortin receptors.

Fast forward to 2015: to make a long story short, melanocortins are HUGE players in circadian biology.

 

POMC ACTH a-MSH

 

Brief background (also see figure above):

Fed state -> high leptin -> a-MSH -> MC4R (the receptor for a-MSH) = satiety, energy production, fertility, etc.

Fasted state -> low leptin -> AgRP blocks MC4R = hunger, energy conservation, etc.

MC4R polymorphisms in humans are associated with obesity.  Melanotan II causes skin darkening (marketed as “photoprotection” [no bueno, imo]), enhanced libido, and appetite suppression.

 

Continue reading

Share

Dark Skies and Light Pollution

The mission of the International Dark-Sky Association is “to preserve and protect the night time environment and our heritage of dark skies through quality outdoor lighting.”  They’re all about stressing the importance of lighting on health, light pollution, and some really interesting stuff.

For more on the topic, check out their website, darksky.org, and Paul Bogard’s book, The End of Night: Searching for Natural Darkness in an Age of Artificial Light.

Continue reading

Share

Circadian Disruption Impairs Survival in the Wild

…just read that huge disasters, ranging from Exxon Valdez to Chernobyl, may have been due, in part, to ignorance of basic principles of circadian rhythms.  Gravitas.

 

circadian rhythms

Continue reading

Share

Meal timing and peripheral circadian clocks

More on why breakfast in the morning, with light onset is important to avoid circadian desynchrony.

FOOD is excellent at entraining peripheral circadian clocks: if you restrict animals to one meal per day, their peripheral circadian clocks rapidly become entrained to this, regardless of when the meal is administered (Hirao et al., 2010):

 

zeitgeber entraining

ZT0 = “zeitgeber time 0,” or “lights on.” pZT indicates a phase shift coinciding almost exactly with meal timing. Mice normally eat at night, but this doesn’t stop their peripheral clocks from entraining to the day time if that’s when their fed.

This study took it to the next level: they fed 2 meals per day, varying in size, time of day, and duration between meals in almost every conceivable combination.  Actually, it was a quite epic study… some poor grad students working, literally, around the clock, for months…

Continue reading

Share

Entraining Central and Peripheral Circadian Rhythms

“Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake, can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and type 2 diabetes.”

If you haven’t been following along, a few papers came out recently which dissect this aspect of circadian rhythms — setting the central vs. peripheral clocks.

In brief (1):  Central rhythms are set, in part, by a “light-entrainable oscillator (LEO),” located in the brain.  In this case, the zeitgeber is LIGHT.

Peripheral rhythms are controlled both by the brain, and the “food-entrainable oscillator (FEO),” which is reflected in just about every tissue in the body – and is differentially regulated in most tissues. In this case, the zeitgeber is FOOD.

In brief (2):  Bright light in the morning starts the LEO, and one readout is “dim-light melatonin onset (DLMO),” or melatonin secretion in the evening. Note the importance of timing (bright light *in the morning*) – if bright light occurs later in the day, DLMO is blunted: no bueno.

Morning bright light and breakfast (FEO) kickstart peripheral circadian rhythms, and one readout is diurnal regulation of known circadian genes in the periphery.  This happens differently (almost predictably) in different tissues: liver, a tissue which is highly involved in the processing of food, is rapidly entrained by food intake, whereas lung is slower.

Starting the central pacemarker with bright light in the morning but skimping on the peripheral pacemaker by skipping breakfast represents a circadian mismatch: Afternoon Diabetes? Central and peripheral circadian rhythms work together.  Bright light and breakfast in the morning.

 

Continue reading

Share

Circadian phase: role of diet

Circadian phase advance: going to bed earlier, waking up earlier.  Blue blockers at sunset, bright light at sunrise.  Flying east.  Autumn.

Circadian phase delay: staying up late, sleeping in.  Flying west.  Spring.  Using smart phones, tablets, and iPads in bed at night.  Light pollution.

Relative to adolescents, infants and children are circadian phase advanced.  This is part of what is fueling the movement to delay high school start times.  Kids are mentally better prepared to work later in the day.  With early school start times, performance is down in the morning, but they kill it on video games after school.  Delaying start time by an hour won’t totally fix this, but could help.

Edit: it seems like a similar movement is happening for adults, too – ie, starting work an hour later.

I’m not saying everything healthwise deteriorates with age, but the gradual circadian phase delay that occurs with aging and overusing blue light-emitting devices at night might not be a good thing.  If a particular diet can promote phase advance, why not? (at least it’d be countering the phase delay).

 

 

Possible role of diet

In the top half of the figure below, it’s mice fed a “normal diet (ND) (high carbohydrate)” (Oishi et al., 2012).  During normal “light dark (LD)” conditions, movement and feeding is concentrated in the active phase.  When the lights are permanently turned off in “dark dark (DD)” conditions, the free-running circadian clock begins to shift slightly forward (phase advance), but nothing drastic.

 

Phase advance high protein diet

 

In the bottom half of the figure, during normal LD conditions the mice are switched to a low carb, high protein diet.  Note how activity shifts leftward (phase advance) during the LD condition.  When low carb, high protein-fed mice are then switched to DD, we can see a clear circadian phase advance.

 

High protein metabolism

 

Low carb, high protein-fed mice ate more but didn’t get fat; physical activity and body temperature were unchanged.  But this post isn’t about that.  Gene expression of key circadian transcription factors in liver and kidney exhibited phase advances.

The next figure is study to the one above, although instead of switching to a low carb, high protein diet, the mice were switched to a low carb, high fat diet (Oishi et al., 2009).

Note the similarity of control (high carb diet) mice: gradual phase advance when switched to DD:

 

Ketogenic circadian phase

 

The phase advance is markedly enhanced in low carb, high fat-fed mice.

The circadian regulation of activity is similarly affected by low carb, high protein, and low carb, high fat diets.  What do those two diets have in common?

A bit of a stretch? carbohydrate restriction mimics some aspects of avoiding artificial light at night and being young: phase advance.  Whether the carbs are replaced with protein or fat doesn’t seem to matter in this aspect.

 

Wanna know what else can do this?  FOOD.  The food-entrainable oscillator (FEO) kickstarts circadian rhythms.  Rodent studies have shown that timed feeding, regardless of the actual time, consistently realigns the circadian expression of numerous genes (eg, Polidarova et al., 2011 and Sherman et al., 2012).

So what’s the hack?  Food: do more of it, earlier in the day.  Phase advance.  Kind of like avoiding artificial light at night or being young.

 

Oh, and mice exposed to dim light at night (who are pretty much metabolically screwed)? phase DELAYED (Fonken et al., 2010).

 

Dim light at night phase delay

 

 

 

calories proper

 

Share

Pharmaceutical-grade circadian enhancement?

Is it possible to improve the amplitude and resiliency of your circadian rhythms?  Is this desirable?  Yes and yes, I think.

Go the fuck to sleep.png

 

Introducing, the aMUPA mice (Froy et al., 2006).  What you need to know about ’em: they have very robust circadian rhythms.  How is this assessed?  Take some mice acclimated to their normal 12 hour light-dark cycle (LD) and place them in constant darkness (DD).  Then take liver biopsies and measure circadian genes to see how well they still oscillate throughout the dark day; this is also known as the free-running clock, and it craps out differently in different tissues depending on a variety of factors.  Most of the time, however, it’ll run for a few days in the absence of light.  Circadian meal timing also helps to hasten re-entrainment.

Note in the figure below: 1) there are two distinct lines of aMUPA mice; and 2) both exhibit a greater amplitude in circadian oscillations during free-running, or DD conditions.

strong circadian rhythms

 

Continue reading

Share

“Afternoon diabetes” and nutrient partitioning

Don’t exacerbate afternoon diabetes with afternoon carbs.

Skeletal Muscle
As discussed previously [at length], insulin sensitivity in skeletal muscle follows a circadian pattern: starts out high in the morning and wanes throughout the day.

Diurnal variation in oral glucose tolerance: blood sugar and plasma insulin levels, morning, afternoon and evening (Jarrett et al., 1972)

 

impaired circadian glucose tolerance in the morning

 

Diurnal variation in glucose tolerance and insulin secretion in man (Carroll and Nestel, 1973)

Circadian variation of the blood glucose, plasma insulin and human growth hormone levels in response to an oral glucose load in normal subjects (Aparicio et al., 1974)

Adipose Tissue
And insulin sensitivity of adipose tissue goes in the opposite direction: starts out low, and increases as the day progresses.

Diurnal variations in peripheral insulin resistance and plasma NEFA: a possible link? (Morgan et al., 1999)
The studies were standardized for a period of fasting, pre-test meal, and exercise… Following insulin, NEFA fell more slowly in the morning (149 uM/15 min) than in the evening (491 uM/15 min).

Diurnal variation in glucose tolerance: associated changes in plasma insulin, growth hormone, and non-esterified fatty acids (Zimmet et al., 1974)
Adipose tissue insulin sensitivity is greater in the evening.  FFA are higher, and get shut down more rapidly, after a carb meal in the evening.

Summary: to minimize blood glucose excursions and proclivity for fat storage, eat more calories earlier in the day; this is circadian nutrient timing.  And according to the Alves study, a low-carb protein-rich dinner best preserves lean tissue during weight loss.

Continue reading

Share

Circadian phase delays and metabolism

Remember the “jet lag-resistant” mice?  Guess what: screw with circadian biology and metabolism pays the price.

In brief, vasopressin was classically thought of as an anti-hypotensive hormone.  The vasopressin analog Desmopressin is used to treat bed-wetting.  But vasopressin biology is much more interesting than that: mice lacking both vasopressin receptors require very little time adapting to large circadian phase changes.  And as with many fundamental concepts in chronobiology, this is intimately linked with metabolism.

People with certain polymorphisms of the vasopressin receptor, V1A, exhibit elevated blood glucose levels and are at greater risk for diabetes (Enhorning et al., 2009):

genotype

This risk is strongest in men in the highest quartile of fat intake, and is statistically more significant after adjusting for age and physical activity:

Fat consumption

This study wasn’t designed to be a very powerful indicator of diet-disease relationships, but a little speculation: some think higher fat [and lower carb] intake should be protective against diabetes… which may be true, for people who can tell time.  Alter one nucleotide in the vasopressin 1A receptor gene and the game changes.

Continue reading

Share

Carb Back-Loading and the Circadian Regulation of Metabolism

Carb Back-Loading (CBL) redux, part I

Step 1: eat little in the morning (maybe some fat+protein; definitely no carb)
Step 2: exercise in the afternoon/evening
Step 3: eat the carbs, all of them.  Preferably high glycemic carbs.
Other: no dietary fat post-workout; protein periodically throughout the day.

What makes CBL different from its predecessors is the stress on the timing – exercise and carbs in the evening.  John Berardi’s “Massive Eating” dietary guidelines are similar: protein+fat meals all day except pre- and post-workout, which are protein+carb meals.  Martin Berkan’s “LeanGains” is fasting most of the time (including pre-workout), exercise in the afternoon, then a big post-workout meal (quite similar to CBL).  My only tweak, as discussed below (and previously here and here), would be a pre- rather than post-workout meal [in some contexts].

There’s a summary of this blog post at the bottom… it might be helpful to read that first (see: “Tl;dr:”).  Also, please note that much of this post is about the fringe of theoretically optimizing nutrient partitioning, like improving from 85 to 90%, or 40 to 45%, not 40 to 90%…  I’m not that deluded.

My initial take, in general, is that this book is loaded with gems about nutrition, exercise, biochemistry, and physiology.  It’s also very readable and has a lot of good recommendations.  In this post, I want to discuss one specific aspect of CBL: tissue-specific circadian regulation of metabolism.

 

nutrient timing

 

Continue reading

Share