Category Archives: chronopharmacology

Circadian Disruption Impairs Survival in the Wild

…just read that huge disasters, ranging from Exxon Valdez to Chernobyl, may have been due, in part, to ignorance of basic principles of circadian rhythms.  Gravitas.

 

circadian rhythms

Continue reading

Meal timing and peripheral circadian clocks

More on why breakfast in the morning, with light onset is important to avoid circadian desynchrony.

FOOD is excellent at entraining peripheral circadian clocks: if you restrict animals to one meal per day, their peripheral circadian clocks rapidly become entrained to this, regardless of when the meal is administered (Hirao et al., 2010):

 

zeitgeber entraining

ZT0 = “zeitgeber time 0,” or “lights on.” pZT indicates a phase shift coinciding almost exactly with meal timing. Mice normally eat at night, but this doesn’t stop their peripheral clocks from entraining to the day time if that’s when their fed.

This study took it to the next level: they fed 2 meals per day, varying in size, time of day, and duration between meals in almost every conceivable combination.  Actually, it was a quite epic study… some poor grad students working, literally, around the clock, for months…

Continue reading

Entraining Central and Peripheral Circadian Rhythms

“Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake, can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and type 2 diabetes.”

If you haven’t been following along, a few papers came out recently which dissect this aspect of circadian rhythms — setting the central vs. peripheral clocks.

In brief (1):  Central rhythms are set, in part, by a “light-entrainable oscillator (LEO),” located in the brain.  In this case, the zeitgeber is LIGHT.

Peripheral rhythms are controlled both by the brain, and the “food-entrainable oscillator (FEO),” which is reflected in just about every tissue in the body – and is differentially regulated in most tissues. In this case, the zeitgeber is FOOD.

In brief (2):  Bright light in the morning starts the LEO, and one readout is “dim-light melatonin onset (DLMO),” or melatonin secretion in the evening. Note the importance of timing (bright light *in the morning*) – if bright light occurs later in the day, DLMO is blunted: no bueno.

Morning bright light and breakfast (FEO) kickstart peripheral circadian rhythms, and one readout is diurnal regulation of known circadian genes in the periphery.  This happens differently (almost predictably) in different tissues: liver, a tissue which is highly involved in the processing of food, is rapidly entrained by food intake, whereas lung is slower.

Starting the central pacemarker with bright light in the morning but skimping on the peripheral pacemaker by skipping breakfast represents a circadian mismatch: Afternoon Diabetes? Central and peripheral circadian rhythms work together.  Bright light and breakfast in the morning.

Continue reading

Circadian Mismatch and Chronopharmacology

Part I: Circadian Mismatch

1. Artificial light at night suppresses melatonin (Lewy et al., 1980); induces “circadian mismatch.”

2. Circadian mismatch is associated with and/or predisposes to breast cancer (eg, He et al., 2014 and Yang et al., 2014).

3. In this epic study, human breast cancer xenografts were exposed to blood taken from healthy, pre-menopausal women during the day (melatonin-depleted), at night (high melatonin), or at night after light exposure (melatonin-depleted) (Blask et al., 2005). They showed that tumors exposed to melatonin-depleted blood exhibited higher proliferative activity than those exposed to melatonin-repleted blood. This has been deemed one of the most “ethical” studies to demonstrate a causal link between circadian mismatch and cancer.

4. And to make matters worse, circadian mismatch also reduces the efficacy of cancer drug therapy (Dauchy et al., 2014).  This study showed that, in a rodent model of breast cancer, exposure to light at night (circadian mismatch) enhanced tumor development and induced tamoxifen-resistance, and this was abolished by melatonin replacement.

melatonin

They also suggested a mechanism: tumors metabolize linoleate into the mitogen 13-HODE.  Melatonin suppresses linoleate uptake.

linoleate 13-HODE

 

 

Continue reading