Category Archives: insulin

Coconut flour is a protein & fiber powerhouse, Op. 90

and similar to almond flour, it’s gluten-free and anti-hyperglycemic (i.e., the opposite of white flour).

Glycaemic index of different coconut-flour products in normal and diabetic subjects (Trinidad et al., 2003)

In this CROSSOVER study, different doses of coconut flour were incorporated into common test foods to see how they impacted the blood glucose response to said test foods.  The total carbohydrate load of each food was 50 grams and to make a long story short, coconut flour dose-dependently reduced the glycemic index.

There’s a lot happening in that figure, but basically the foods with the least coconut flour (e.g., white bread) elicited far greater increases in blood glucose than foods with the most coconut flour (e.g., coconut flour brownies).  Mechanistically, this is most likely due to coconut flour’s fiber and/or fat content (both of which slow down glucose absorption and both of which are markedly higher in coconut flour compared than white flour).

Coconut flour: anti-hyperglycemic

Moving on,
the lipid component of coconut flour, coconut oil, is kind-of-amazing in itself.

1) Coconut oil is a perfectly suitable substitute for butter if you’re following a casein-free diet (e.g., GFCF).  You don’t need to be a molecular gastronomer or food scientist to try it; refined coconut oil can be used just like butter (“virgin” coconut oil, on the other hand, retains a strong coconut flavor).

2) Coconut oil is rich in the magical ketogenic medium chain fatty acids (e.g., C12 laurate) and to over-simplify a series of very elegant studies on diet and diabetes (detailed in Diet, diabetes, and death [oh my] [highly recommended reading if you’re into fatty acids, etc.]), coconut oil is remarkably protective against diabetic pathophysiology; a property not shared with lard, corn oil, or shortening.

Indirect confirmation of the presence of ketogenic medium chain fatty acids in coconut oil can be seen in this study by Romestaig.  Rats fed a diet rich in coconut oil ate more calories but gained less weight than rats fed a high butter or low fat diet:

Coconut oil-fed rats (solid black circles) ate more than the butter group but weighed less.  Coconut oil-fed rats ate WAY more than the low fat group but weighed just as much.  Nice, huh?  Getting back to the point, this is virtually identical to what happens on bona fide ketogenic diets (see Episode 2 of the ketosis series and Ketosis, III), where carbohydrates are kept below 5% of calories (which is phenomenally low, 25 grams on a 2000 kcal diet).

Coconut flour: anti-hyperglycemic
Coconut oil: ketogenic
Coconut protein ?  … calorie for calorie, coconut flour has more protein than most other flours.

In recent study on diabetic rats, Salil showed that coconut protein completely protected against alloxan-induced diabetes (this study was published in 2011; unlike the earlier studies referenced above, researchers are no longer allowed to give fatal doses of alloxan to rats and count the days until they die.  Nowadays they just look at the surrogate marker blood glucose [it goes up very high in diabetes]).  Alloxan is a pancreatic toxin which destroys insulin-producing beta cells.

Group 1 (open bar) = controls group.  Group II (black bar) = fed coconut protein.  Group III (vertical stripes) = diabetic.  Group IV (diagonal stripes) = diabetic and fed coconut protein.  A diet high in coconut protein made these rats invincible to alloxan… just like coconut oil.  Coincidence?  (to be continued)

Coconut oil and coconut protein are both present in coconut flour.   While it’s not as expensive as almond flour, coconut flour is still pricier than regular white flour.  But people love their baked goods, pastas, and breads.  If there is ever going to be a way for these foods exit the realm of “empty calories,” the first step is abandoning white flour.  Maybe your muffins won’t be so big and fluffy, but neither will your ass.

calories proper

 

Almonds: nutrition’s coolest drupe, Op. 89

(it’s a “drupe,” not a nut.  [Thank you Wikipedia.])

Should almonds be upgraded from “snack” to food?  Should almond flour be used in place of some or all white flour?  Yes and yes, IMHO.

In 2007, Josse and colleagues did a quick-and-dirty study on almonds and glucose tolerance.  They fed a group of volunteers 50 grams of carbs from white bread and either 0, 30, 60, or 90 grams of almonds and then measured blood glucose over the following two hours.  “Quick” because they probably had almonds and bread in the refrigerator, and glucometers in their desk drawers; “dirty” because there were a lot of uncontrolled variables; for example: fiber, protein, and fat content of the test meals differed wildly:In a proper study, they might have tried to feed everyone the same amount of fiber, protein, and fat, because each of these is known to affect blood glucose.  In any case, the result was pretty cool:

Whole almonds dose-dependently blunted the blood glucose response to the test meal.  Conclusion: almonds = anti-hyperglycemic.  But almonds are complex lil’ things; they’re made of protein, fat, fiber, and a lot of nutrients; so what’s responsible for all the anti-hyperglycemic effect?  this post is not simply an academic pursuit; indeed, almond flour and almond oil are commercially available, affordable, widely used, and are comprised of different fractions of the almond.  So Mori and colleagues decided to study.

Acute and second-meal effects of almond form in impaired glucose tolerant adults: a randomized crossover trial.  (Mori et al., 2011)

In this excessively high quality study, the effect of 4 different types of almond preparations on glucose tolerance was assessed.

What was tested (in a FIVE-WAY crossover study):
WA = whole almonds
AB = almond butter
AF = defatted almond flour (remember this stuff? lacks all the bifidogenicity of regular almond flour )
AO = almond oil
V = vehicle: negative control.

Basically, the participants were fed a breakfast of OJ and Cream of Wheat with the equivalent of 33 almonds (42.5 grams) for a total of 75 grams of carbs, and blood glucose was measured over the next 2 hours.

Notable nutritional differences between the almond preparations:  they all contain a similar fat content except for the defatted almond flour; whole almonds and almond butter have 2-3 times more fiber than almond flour and almond oil; almond oil has half the protein as all the others.

In brief, no almond preparation affected insulin or free fatty acids.

Whole almonds, almond butter, and almond oil, on the other hand, all blunted the glycemic response.  Defatted almond flour, which only really differs in its lack of almond fat, did not.  Thus, according to last post, almond fat is a potent bifidogen (i.e., good for gut bacteria); and now we see it’s also responsible for the anti-hyperglycemic effect of almonds.  These two effects are probably unrelated, however, as any effect on gut bacteria will take significantly longer than a few hours as the almond fat hasn’t even reached the large intestine by then… (the anti-hyperglycemic effect is evident within 2 hours; the bifidogenic effect noted by Mandalari was 8-24 hours).

OK, almond fat slows the absorption of glucose, so what? this is not exciting… it’s common among most fats- “dietary fat reduces the glycemic index of food.”  But this has a greater implication: one could alternatively conclude that almond flour’s lack of fiber was at fault, as dietary fiber is also known to slow glucose absorption.  However, almond oil, which has even less fiber than defatted almond flour, was also anti-hyperglycemic.  So it’s not the fiber (… perhaps because almond fiber is predominantly insoluble).

With regard to all-things-almonds: almond fat, not almond fiber, is anti-hyperglycemic and bifidogenic (what can’t it do?).

Almond fat: +2

Solution: whole almonds (with meals?), almond oil (with whatever), and regular [non-defatted] almond flour (for baking?).  WRT the latter, get all the benefits, a boost for the gut microbiota, and significantly fewer carbs than with white flour (while actually attenuating the glycemic impact of said white flour).

An argument for almond flour: most baked goods are made with white flour.  These foods are predominantly empty calories, the bane of human health and well-being.  Substituting almond flour for white flour is one way to decrease the emptiness of those calories, and thus of life itself (it’s gluten-free too).

calories proper

ORIGIN vs. pre-diabetes, Op. 83

Sanofi, one of the world’s largest pharmaceutical companies, just released results from its ORIGIN trial.

Basal insulin and cardiovascular and other outcomes in dysglycemia (2012 NEJM)

The goal was to see if nightly insulin injections could prevent pre-diabetics  from becoming real diabetics.  ORIGIN was monstrous: >12000 participants, 40 countries, 6 years, etc.  FYI the subjects included in this study, mostly pre-diabetics, are not usually candidates for insulin injections (diet and lifestyle modification seem to work OK for this group).  If ORIGIN showed a positive result, then the number of patients to receive this treatment, and therefore the number of prescriptions written for Sanofi’s Insulin Glargine, would increase dramatically =  $anofi 🙂

IMHO, Sanofi is hunting for a new bunch of people to whom they can market their same old drug.  (Not a good practice.)  To stay alive in the fiercely competitive pharmaceutical industry, companies have to either invent new drugs to treat old diseases or invent new diseases that use old drugs.  In this case, they are saying that pre-diabetes, or “dysglycemia,” should be a new indication for insulin.  Pre-diabetes is not a new disease, but insulin was never warranted (Rx = diet and lifestyle modification).

I have no financial disclosures to report (but I’m open to offers).  Of moral disclosures, on the other hand, I’ve got but one.  Insulin injections are fraught with side effects and should be reserved for people who need them.  I don’t believe these people need them.

divide and conquer

After 6 long years of insulin injections (or standard care in the control group), the researchers tested for diabetes.  Lo and behold, diabetes was present in 35% of controls and 30% of the insulin-treated group; i.e., insulin-treated patients had a 20% lower chance of developing diabetes (odds ratio [OR] of 0.80, p = 0.05).  Apparently, insulin prevents diabetes.

Or not.

Exhibit A.  There’s a caveat to these diabetes rates.  The subjects were tested for diabetes at the end of the study.  Anyone who didn’t have it was re-tested a few weeks later; only those who didn’t have it were re-tested a few weeks later (during which time they received no treatment).  The researchers claim they were trying to assess the “durability of diabetes prevention.”  Here’s the rub:  25% of the patients on insulin tested positive for diabetes at the end of the study.  A few weeks later (during which time they weren’t being treated) some of the people who initially tested negative for diabetes (insulin obviously must have been protecting them), now tested positive, increasing the total to 30%.  This must have happened because they were no longer protected by insulin!  Err, no.  Diabetes in the control group, the group who was deprived of insulin from the start, went from 31% to 35% during the same exact time period.  It’s not “durability of diabetes prevention,” it’s experimental bias: by only RE-testing people who were initially negative, the total could only stay the same (if there were no false negatives) or go up (if there were false negatives).  The fact that it went up in both groups could simply mean that the re-test either: 1) detected diabetes in some people who falsely tested negative the first time around; and/or 2) generated some new false positives.  To correct for this, they should have also re-tested anyone who tested positive for diabetes.  *The importance of this difference is described below.

Exhibit B.  Disclaimer: statistics are the bane of my existence.  

The rate of disease was rather high in both groups (>>10%); if you calculated the  “relative risk (RR)” instead of “odds ratio (OR),” you’d get 0.857. An RR of 0.857 is not as pretty as an OR of 0.80 (lower is better).  Their “OR of 0.80” was barely statistically significant (p = 0.05); I’d be willing to bet that an “RR of 0.857” would not have been so lucky… so why did they choose to publish the OR?  OK, no suspense necessary:  I think if this measurement turned out non-significant, then the entire study would’ve been a waste of time and a LOT of money.  And they would have no shot at an entirely new market for their same old drug.  *This is precisely why proper diabetes diagnoses and statistical analyses were so critical in this study.  To be clear: this is going to come down to a numbers game, and the numbers don’t support a new indication for insulin in pre-diabetics.  But fuzzy math and biased testing makes this appear as though it is a debatable conclusion.

Moving on.

HbA1c, a marker of long-term glucose control was 6.4% at baseline in both groups.  Insulin therapy lowered this to 6.3% (not exactly something to write home about) while it drifted to 6.5% in controls.  This insignificant effect of insulin on HbA1c didn’t come cheap, however.  The insulin treated group experienced a huge number of severe hypoglycemic episodes:

Not surprisingly, the severity of hypoglycemia was totally downplayed in Sanofi’s press release despite it being the most robust and statistically significant finding in the entire study.

People in the insulin-treated group got a little heavier (by about 5 pounds), and surprisingly, the control group lost a little weight (about a pound).  I say “surprisingly” because this population is expected to be weight stable or gaining weight.

Lastly, fortunately, there was no difference in mortality.  This is not unexpected because the intervention was mild and the patients were relatively healthy (i.e., not people who need nightly insulin injections).  When a more intensive insulin intervention was tested on frank diabetics, the study was halted because too many people died.  Enter: The ACCORD study.

Effects of intensive glucose lowering in type 2 diabetes (circa 2008)

Intensive insulin therapy lowered HbA1c waay more in ACCORD than mild insulin therapy did in ORIGIN: 

but it also lowered lifespan: 

In conclusion:  YES, high blood glucose is the culprit, and YES, it needs to be lowered.  But NO, insulin injections are not the answer.  If you have lactose intolerance, you stop eating lactose.  These people have glucose intolerance; they need to stop eating glucose.

calories proper