Tag Archives: fat

Alcohol on keto

This article isn’t about alcohol tolerance.  It’s about your liver.

Tl;dr: with a basic knowledge about alcohol metabolism and ketoadaptation, drinking on keto gives me pause.

It might be nothing, but it gives me pause.

Alcohol is metabolized primarily by alcohol dehydrogenase, producing acetaldehyde and reducing equivalents as NADH.  This pathway produces energy.

Continue reading

Ketones, carbs, and physical performance.

Or more specifically, ketone monoesters and carbs.  Literally, this study was a high-dose ketone monoester supp sans caloric or carb restriction.  I know, weird right?

 

Ketone ester

 

Non sequiter nutrition notes, #context, etc.:

1) ketone esters =/= ketone salts.  Ketone salts are either sodium or potassium-dominant.  Ketone esters are essentially salt-free.  Possibly helpful background reading here.

2) nutritional ketosis =/= starvation ketosis =/= ketone supp ketosis.  Because #context.

Starvation ketosis, but not nutritional ketosis, is muscle-sparing.  Ketone supps sans carb restriction might be.

3) the theory of ketone supps for sport is: 1) ketones are an energetically favorable fuel; and 2) they’ll spare glycogen, theoretically allowing prolonged duration of moderate-to-high intensity performance.  Adding in carbs will likely further this.

4) I have no studies to support this, but the idea of ketone supps in the #context of high carb doesn’t sit will with me.  Seems like high levels of both substrates = mitochondrial overload and oxidative stress.  Maybe.

5) there’s a gradient of fuel use during exercise:

-explosive power: creatine, anaerobic

-high intensity: glycogen, anaerobic

-low intensity: fatty acid oxidation, aerobic

But it’s a gradient with a lot of overlap, and ketoadaptation further blurs the lines.

 

Continue reading

Hey CICO, I’m playing by your rules.

Brief background: the notorious Ebbeling study of 2012 showed an apparent metabolic advantage of a ketogenic diet.  After losing some weight, participants were assigned to low fat (LF), low GI, or ketogenic diets.  As expected, energy expenditure (EE) declined in all groups after weight loss.

 

Continue reading

Dopamine and breakfast

T.S. Wiley wrote a lot about the protein-rich breakfast; here’s my understanding of her take on it.

N.B. I highly recommend her book, Lights out: sleep, sugar, and survival.

Quotes are mainly taken from the text. I’ve tracked down some of the cites; the rest are in the back of the book, albeit somewhat unorganized :/

Part 1. We naturally have a cortisol spike first thing in the morning, known as the Cortisol Awakening Response (CAR).  This peak, which can be screwed up by artificial light at night or a big evening dinner, helps support morning light-induced dopamine.

CAR

Dopamine is great, but may induce impulsivity if it’s unfettered.

Enter: the protein-rich breakfast. It provides tryptophan and a bit of insulin to promote serotonin synthesis (eg, Manjarrez-Gutierrez et al., 1999).

Not enough serotonin to make you crazy, just enough to balance the dopamine = impulse control.

~ circadian balance achieved ~

Continue reading

Insulin resistance is a spectrum

The history of low fat diets is riddled with crappy low fat food-like products.

Food quality matters.

Free full article on Patreon! <- link

Take a group of obese people and assess insulin sensitivity however you like: some researchers demand nothing less than a hyperinsulinemic-euglycemic clamp (Gold Standard), others are OK with insulin levels during an oral glucose tolerance test.

Next, divide the people up based on this — there are a few ways you can do it.  You can: take the top half vs. the bottom half (a method which includes everyone); take the top third vs. bottom third (excluding the middle third); take the top quarter vs. bottom quarter (excluding the middle 50%), etc.

THIS MATTERS because in referencing this topic, many people claim most obese are insulin resistant.  They may be more insulin resistant than lean people, but even within obese people, there’s a spectrum, and the spectrum matters in this #context.

 

Continue reading

Personalized Nutrition II

More on Zeevi et al. (2015) (this is a follow-up to part 1)

I like this study a lot, or at least the fundamentals… or new tools that it might bring to the table.  Like, we know sleep and physical activity are important, and we know all calories aren’t created equal.  This study is the next level, showing there are even big differences in specific carb-rich foods depending on who’s eating them.

And more interestingly, if I’m interpreting the results of the intervention study correctly (which may not be the case), gut microbial responses to specific foods were very individualized… and predictable!

But first, the main part of the study — standardized meals (after overnight fast): 50g carbs from glucose, white bread, bread and butter, bread and dark chocolate, and fructose.  All repeated at least once (except fructose).  Everyone responded pretty similarly to fructose (little to no blood glucose spike), but a wide range of responses to glucose.

PPGR = PostPrandial Glucose Response

 

glucose and fructose

 

Bread:

 

bread

 

The range of PPGR to bread was ~15 to 79!

Again, here are some of the findings I found most interesting (besides the huge range in glycemic response to bread):

 

 

banana and cookie

 

Participant #468 has a consistently higher response to glucose than to white bread.  Participant #663 is the opposite.  And participant #445 is still winning.

I truly wonder if there’s a gut microbe (or something) that’s involved here…

 

Continue reading

Personalized Nutrition by Prediction of Glycemic Responses

“please stop asking gurus how many carbs you need to optimize health”

 

bananas cookies

An interesting paper came out recently by Zeevi et al. (2015), showing, in part, that we’re all unique snowflakes (in some contexts).

 

#context

#context

 

Mini-rant: this study is in line with a lot of my beliefs about individuality in human biology.  We don’t know all the mechanisms, but we do know that some people respond better to some interventions than others.  We learn a lot from studies on diet, light, sleep, physical activity, etc., but the findings rarely/never apply equally to everyone (and some people experience completely opposite effects; eg, see studies where individual data are reported).  LIGHT exposure can improve sleep quality in some but cause agitation in others.  Low carb diets can help weight loss in some people but low fat is better for others.  Dairy, wheat, protein, the ‘biome, and fibre/resistant starch all fall into this category.  Sleep ‘requirements’ vary by person, season, geography, etc., etc…  there’s no QED answers in many of these contexts.

anecdote: some people say they’ve never had better blood glucose than when they were having a few servings of beans/legumes per week; others just report bloating & farts (no bueno).

End rant.

Background reading:

  1. The Atlantic ran a decent piece on this study (certainly more colorful than my take)
  2. Reddit AMA with some of the people involved in the study

 

In this particular study (video summary below): they continuously monitored the blood glucose responses in 800 people to all of their meals for a week, including a variety of test meals.  Main result: many different responses, even to the same foods!  An oversimplified example: some people had smaller relative postprandial glucose excursions after 50g carbohydrate from rice compared to 50g carb from potatoes, and other people responded oppositely.  And friggin’ tomatoes?!

Translation: need to move beyond recommending #IIFYM.

Some foods were universally well-tolerated [in this population] in the context of mixed meals, like quinoa and salmon; other foods did the opposite, like chocolate chip cookies and sushi.  And lastly, some foods like cottage cheese and hummus were good for some people but others.

 

bananas cookies[participant 445 is winning]

 

*In general, I don’t believe in labeling foods as categorically good or bad, which is pretty much confirmed by this study, but some patterns emerged wrt postprandial glucose excursions in this population…

#context

 

Continue reading

A brief explanation of Hall et al., ie, THE LOW CARB WAR

“Examination of acute shifts in energy balance by selectively reducing calorie intake from one macronutrient.”

Intro (1/2): please don’t read this study with the media headlines in your mind.  Don’t even pay any attention to the study’s title, abstract, intro, and discussion.  In no way did this study put low carb proper on the chopping block, regardless of what you’ve seen online or elsewhere.  Mmmkay?

 

Intro (2/2): if you want a lesson (or refresher) in Advanced Nutrition, check out the Supplemental Information: in formulating his mathematical models, Dr. Hall seemingly reviewed every single biochemical pathway and physiological variable ever invented.  Read it, for science.  Really.

 

Continue reading

Ketosis is a hack: here’s why

There are multiple distinct flavors of diabetes/obesity, as evidenced by the fact that some people have: 1) impaired glucose tolerance (but normal fasting glucose); 2) others have impaired fasting glucose (but normal glucose tolerance); and 3) others have both.  This means there isn’t a linear relationship between these phenomena*.  There are also: 4) obese patients with normal glucose metabolism; and 5) lean patients with type 2 diabetes.

*I think the great Dr. Kraft may have missed some of the nuances here.

There is not 100% overlap among these, suggesting [confirming] distinct diabetes/obesity phenotypes (and probably causes & best treatments).

 

 

midnightsun

 

Continue reading

Saturated fat, cholesterol, and carbohydrates

“You catch more flies with honey…”

^^^good policy in general, but especially for debating in the realm of nutritional sciences.

 

A short while back, Nina Teicholz discussed low carb ketogenic diets and plant-based diets with John Mackey.  Although I disagree with the dichotomy (keto vs. plant-based), it’s well-worth a watch:

 

 

Three topics that could not be avoided in such a discussion: saturated fat, cholesterol, and carbohydrates.

 

 

Continue reading