Tag Archives: exercise

Ketones, carbs, and physical performance.

Or more specifically, ketone monoesters and carbs.  Literally, this study was a high-dose ketone monoester supp sans caloric or carb restriction.  I know, weird right?

 

Ketone ester

 

Non sequiter nutrition notes, #context, etc.:

1) ketone esters =/= ketone salts.  Ketone salts are either sodium or potassium-dominant.  Ketone esters are essentially salt-free.  Possibly helpful background reading here.

2) nutritional ketosis =/= starvation ketosis =/= ketone supp ketosis.  Because #context.

Starvation ketosis, but not nutritional ketosis, is muscle-sparing.  Ketone supps sans carb restriction might be.

3) the theory of ketone supps for sport is: 1) ketones are an energetically favorable fuel; and 2) they’ll spare glycogen, theoretically allowing prolonged duration of moderate-to-high intensity performance.  Adding in carbs will likely further this.

4) I have no studies to support this, but the idea of ketone supps in the #context of high carb doesn’t sit will with me.  Seems like high levels of both substrates = mitochondrial overload and oxidative stress.  Maybe.

5) there’s a gradient of fuel use during exercise:

-explosive power: creatine, anaerobic

-high intensity: glycogen, anaerobic

-low intensity: fatty acid oxidation, aerobic

But it’s a gradient with a lot of overlap, and ketoadaptation further blurs the lines.

 

Continue reading

Share

Long-term fat adaptation

Recent comments about FASTER have upgraded this study to “the only long-term study on fat-adaptation.”  Needless to say, I disagree.  Again.

Side note: FASTER had no randomization or intervention (ie, confounded by selection bias, among others); they basically recruited long-term low carb & high carb ultra-endurance runners and measured the stuffings out of ’em.

Ultimately, they showed a very high maximal fat oxidation rate in low carb ultra-runners, 1.5 grams per minute.  This is important because MAXIMAL HUMAN FAT BURNING CAPACITY

 

TROGDOR the BURNiNATOR

 

In previous studies on SAD (Standard Athletic Diet haha), maximal fat oxidation at similar VO2max% has been reported to be much lower, <1 g/min (eg, Hetlid et al., 2015 and Volek et al., 2016).

 

Continue reading

Share

Keto-Crossfit

Study: a handful of average-bodied Crossfitters in their mid-30’s were recruited and told to either: 1) keep doing what they’re doing; or 2) go full keto.  Crossfit 4x/week.   Strength testing before and after 6 weeks (Gregory et al., 2017).

I’ll start with the best part: KETOADAPTATION IS A REAL TRUE THING THAT WORKS (P<0.05).  Otherwise, this group’s performance would’ve plummeted.  It is known.

The performance test was time to complete a 500-meter row, 40 body weight squats, 30 abdominal mat sit-ups, 20 hand release pushups, and 10 pull-ups.

Tl;dr: both groups knocked about a half a minute off their time!

The key here is duration: 6 weeks of ketogenic dieting is adequate to restore performance back to baseline.  <3 weeks is not.

 

performance

 

Here’s the downside (sort of):

 

body comp

Basically, the keto group dropped carbs and failed to compensate by upping other calories.  I know I know, spontaneous ad lib appetite reduction, but this is a study on PHYSICAL PERFORMANCE.

 




 

And in further support of “muscle growth sans carbs,” keto dieters upped protein by 15% and this still wasn’t enough to compensate for the reduction in carbs/insulin: they still lost a bit of lean mass (NS).  Imagine if they hadn’t increased the brotein? yikes

 

food

 

so basically, they lost body fat because CICO and retained lean mass because exercise and protein haha jk

 

Admittedly, it was cool to see the body comp changes, but we know fat loss eventually plateaus and people start eating maintenance calories again (maybe a bit more if Ebbeling can be believed).  And this is where they remain for the rest of their lives (hopefully).  So at 6 weeks, they were still losing weight, nowhere near where they’re going to be for the rest of their lives, but THAT’s where I’d like to see performance testing (ie, at a stable body weight).  Don’t get me wrong, I hate myself in advance for making this critique: the researchers should’ve pushed more calories in the keto dieters bc this is a confounder in a study on PHYSICAL PERFORMANCE…  but this doesn’t really matter in the big scheme of things because Blackburn’s group did that and showed the results were the same haha

 

 

On another note, I don’t think people should expect an additional performance boost from being more ketoadapted (or more fat-adapted or whatever), primarily because whether the study is 3 weeks or 6, performance never really gets better than baseline in experienced athletes.  With more advanced training techniques, sure (and I think this is common), but not more keto- or fat-adaptation.

For full access to all articles and much more (or if you just like what I do and want to support it), become a Patron! It’s three bucks a month and there are many other options. Sign up soon because there are only a limited number of spots left at the $3 level. It’s ad-free and you can cancel if it sucks ????

Also, I’m open to suggestions, so please don’t hesitate to leave a comment or contact me directly at drlagakos@gmail.com.

Affiliate discounts: if you’re still looking for a pair of hot blue blockers, Carbonshade  is offering 15% off with the coupon code LAGAKOS and Spectra479 is offering 15% off HERETrueDark is running a pretty big sale HEREIf you have no idea what I’m talking about, read this then this.

20% off some delish stocks and broths from Kettle and Fire HERE

If you want the benefits of  ‘shrooms but don’t like eating them, Real Mushrooms makes great extracts. 10% off with coupon code LAGAKOS.

 

calories proper

Become a Patron!

 

 

Share

Muscle growth sans carbs

1.  net muscle growth = synthesis – breakdown

2.  need =/= optimization

3.  #context

 

muscle sans carbs

 

I’m totally cool with keto, honestly!  but still don’t really like seeing stuff like the above graphic and people interpreting it to mean “KETO IS MUSCLE-SPARING.”

 

Continue reading

Share

Cyclical ketosis, glycogen depletion, and nutrient partitioning

Meal & exercise timing in the contexts of “damage control” and nutrient partitioning are frequent topics on this blog.  I generally opt for a pre-workout meal, but nutrient timing hasn’t panned out very well in the literature.  That’s probably why I’m open to the idea of resistance exercise in the fasted state.  A lot of pseudoscientific arguments can be made for both fed and fasted exercise, and since a few blog posts have already been dedicated to the former, this one will focus on the latter.

The pseudoscience explanation is something like this: since fatty acids are elevated when fasting, exercise in this condition will burn more fat; and chronically doing so will increase mitochondria #.  The lack of dietary carbs might enhance exercise-induced glycogen depletion, which itself would bias more post-workout calories toward glycogen synthesis / supercompensation.  Much of this is actually true, but has really only been validated for endurance training (eg, Stannard 2010, Van Proeyen 2011, & Trabelsi 2012; but not here Paoli 2011)… and the few times it’s been studied in the context of resistance exercise, no effect (eg, Moore 2007 & Trabelsi 2013).  However, there are some pretty interesting tidbits (beyond the pseudoscience) which suggest how/why it might work, in the right context.

Exercising fasted or fed for fat loss?  Influence of food intake on RER and EPOC after a bout of endurance training (Paoli et al., 2011)

John Kiefer, an advocate of resistance exercise in the fasted state, mentioned: “the sympathetic nervous system responds quicker to fasted-exercise. You release adrenaline faster. Your body is more sensitive particularly to the fat burning properties of adrenaline and you get bigger rushes of adrenaline.”

Much of this is spot on.  That is, ketogenic dieting and glycogen depletion increase exercise-induced sympathetic activation and fat oxidation (eg, Jansson 1982, Langfort 1996, & Weltan 1998).

The question is: can this improve nutrient partitioning and physical performance?  Magic 8-Ball says: “Signs point to yes.”  I concur.

Contrary to popular beliefs, glycogen depletion per se doesn’t harm many aspects of physical performance.  A lot of fuel systems are at play; you don’t need a full tank of glycogen.

Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men (Langfort et al., 1996)

High-intensity exercise performance is not impaired by low intramuscular glycogen (Symons & Jacobs, 1989)

Increased fat oxidation compensates for reduced glycogen at lower exercise intensities (eg, Zderic 2004), and ketoadaptation may do the same at higher intensities.

Continue reading

Share

Carb Back-Loading and the Circadian Regulation of Metabolism

Carb Back-Loading (CBL) redux, part I

Step 1: eat little in the morning (maybe some fat+protein; definitely no carb)
Step 2: exercise in the afternoon/evening
Step 3: eat the carbs, all of them.  Preferably high glycemic carbs.
Other: no dietary fat post-workout; protein periodically throughout the day.

What makes CBL different from its predecessors is the stress on the timing – exercise and carbs in the evening.  John Berardi’s “Massive Eating” dietary guidelines are similar: protein+fat meals all day except pre- and post-workout, which are protein+carb meals.  Martin Berkan’s “LeanGains” is fasting most of the time (including pre-workout), exercise in the afternoon, then a big post-workout meal (quite similar to CBL).  My only tweak, as discussed below (and previously here and here), would be a pre- rather than post-workout meal [in some contexts].

There’s a summary of this blog post at the bottom… it might be helpful to read that first (see: “Tl;dr:”).  Also, please note that much of this post is about the fringe of theoretically optimizing nutrient partitioning, like improving from 85 to 90%, or 40 to 45%, not 40 to 90%…  I’m not that deluded.

My initial take, in general, is that this book is loaded with gems about nutrition, exercise, biochemistry, and physiology.  It’s also very readable and has a lot of good recommendations.  In this post, I want to discuss one specific aspect of CBL: tissue-specific circadian regulation of metabolism.

 

nutrient timing

 

Continue reading

Share

Fasting, circadian biology, and epigenetics

From the best I can gather, one of the more immediate players in circadian biology is the coenzyme nicotinamide adenine dinucleotide (NAD), which participates in a variety of redox reactions.  Fasting increases the intracellular NAD/NADH ratio, setting off a cascade of events involving epigenetics and the regulation of metabolism.

NAD activates sirtuins, a family of deacetylase enzymes.  This is epigenetics.

SIRT1

 

SIRT1 regulates the activity of BMAL1 and CLOCK, two circadian transcription factors, which target NAMPT, an enzyme that synthesizes NAD.  And in a curious feed-forward mechanism, CLOCK and BMAL1 enhance SIRT1 expression… genetic deletion of any of these players induces insulin resistance (Zhou et al., 2014), and this can be recapitulated with constant darkness: reduced BMAL1 and SIRT1, hepatic insulin resistance; the latter can be reversed with resveratrol (which may or may not be acting through SIRT1; this is controversial).  While alcohol does no great favors for circadian biology, if you’re going to imbibe, perhaps a resveratrol-rich Argentinian malbec served, and this might be the important part, at night, when all of this stuff is going on… coincidentally [fortunately], that’s precisely when most choose to imbibe.

Continue reading

Share

More on physical performance and ketoadaptation

The various studies on how low carbohydrate diets impact physical performance are very nuanced.  Here’s what I mean by that.

Exhibit A. Phinney 1980

Phinney 1980

In this [pioneering] study, obese patients were subjected to a variety of performance assessments in a baseline period, then after 1 and 6 weeks of weight loss via protein-sparing modified fast (1.2 g/kg ideal body weight from lean meat, fish, or fowl; probably around 80 grams of protein/d, 500-750 kcal/d). They lost a lot of weight, 23 pounds on average, two-thirds of which was body fat. There was no exercise intervention, just the performance assessments.

During the ‘exercise to exhaustion’ treadmill exercise, RQ steadily declined from baseline to week 1 to week 6, indicating progressively more reliance on fat oxidation.  This was confirmed via muscle glycogen levels pre- and post-exercise: during the baseline testing, they declined by 15%; after 6 weeks of ketoadaptation, however, they only declined by 2%, while ‘time to exhaustion’ increased by 55%.  After only 1 week of the diet, time to exhaustion plummeted, as expected, by 20%.

This was, as mentioned above, a pioneering study in the field of ketoadaptation. It also challenges one of the prevailing theories of ‘fatigue’ …while carb-adapted, the subjects fatigued after 168 minutes, with muscle glycogen levels of 1.29 (reduced by 15%); while ketoadapted, they fatigued after 249 minutes with muscle glycogen levels of 1.02 (reduced by 2%).  In other words, they had less glycogen to begin with, used less glycogen during exercise, and performed significantly better (running on fat & ketones).

Exhibit B. Vogt 2003

Highly trained endurance athletes followed a high fat (53% fat, 32% carbs) or high carb (17% fat, 68% carbs) diet for 5 weeks in a randomized crossover study. In contrast to Phinney’s study, these participants were: 1) highly trained; and 2) exercised throughout the study.

Maximal power output and VO2max during a similar ‘time to exhaustion’ test was similar after both diet periods.  Same for total work output during a 20 minute ‘all-out’ cycling time trial and half-marathon running time.  Muscle glycogen was modestly, albeit statistically non-significantly lower after ketoadaption; however, ketoadapted athletes relied on a higher proportion of fat oxidation to fuel performance as indicated by lower RQ at every level of exercise intensity:

Vogt RQ

Again, this is the essence of ketoadaptation. Physical performance as good as or better using fat and fat-derived fuels.

One reason Phinney’s glycogen-depeleted ketoadapted subjects may have done so well is their reliance on ketones (probable) and intramyocellular lipids (IMCL) (possible).  In Vogt’s study, IMCL increased from 0.69 to 1.54% after ketoadaptation…

Also, food intake and body fat declined, and training volume increased in the low fat group; whereas food intake increased, and body fat and training volume declined in the high fat group.  Reminiscent of anything?

High fat, low carb -> eat more, exercise less, STILL LOSE BODY FAT.

Vogt data

Sorcery?  No.  Diet impacts more than just mood and body composition – resting energy expenditure increased in the ketogenic dieters.  This isn’t an isolated finding.

Exhibit C. Fleming 2003 

This was another study in non-trained athletes, consuming high fat (61% fat) or control (25% fat) diets for 6 weeks.  The tests were the 30-second Wingate, to examine supramaximal performance, and a 45-minute timed ride, to examine submaximal performance.

This study differed from the previous two in several significant ways.  For starters, peak power output declined in both groups, slightly more so in the high fat group (-10% vs. -8%).  Furthermore, RQ didn’t wasn’t significantly lower during this test in the high fat group, which possibly suggests they weren’t properly ketoadapted.  In Phinney’s study, the large energy deficit ensured ketoadaptation; this study lacked that aspect, somewhat more similar to Vogt’s, although unlike Vogt’s, these participants weren’t athletes which presumably makes ketoadaptation more difficult.

There are many factors at play… I wasn’t kidding when I said these studies are very nuanced!

Exhibit D. the infamous, Paoli 2012 

These were ‘elite artistic gymnasts,’ who could likely beat you in a race running backwards.  The ketogenic phase consisted of 55% fat and much more protein than the control phase (39% fat; protein: 41% vs. 15%). The significantly higher protein content was modestly offset by slightly more calories in the control phase, which reduces the amount of protein required to maintain nitrogen balance.

In this study, performance was, for the most part, ‘maintained,’ with relative increases in a few of the tests; eg, the “legs closed barrier.”  Changes in body composition were more robust: significantly reduced body fat and increased lean body mass after 30 days of ketogenic dieting (with their normal exercise routine).

Paoli data

The major confounder in this study was the use of an herbal cocktail only in the ketogenic diet group; despite this, the results are largely in line with the other studies.  For more on this study, see here.

Exhibit E. the most dramatic one to date: Sawyer 2013 

Please see here for the details, but in brief, strength-trained athletes showed improvements in high intensity exercise performance after only 7 days of carbohydrate restriction.  The nuances of this particular study are discussed more here.

barbell

Collectively, these studies show that physical performance in both endurance and high intensity realms does not always suffer, can be maintained, and in some cases is improved by ketogenic dieting.  Important factors are duration (to ensure adequate ketoadaptation), energy balance, and regular physical activity (athletes and regular exercisers can adapt to burning fat much quicker than sedentary folks).

 

calories proper

Share

Nutrient Partitioning: …a *very* high protein diet.

Or: what happens when you eat a ton of protein?

RDA: 0.8 g/kg

Active individuals: 1.2-2.0 g/kg (via ISSN)
Comment (1): I think sedentary, physically inactive, and non-exercisers should be in this range to offset disuse atrophy.  And they should exercise.
Comment (2): Do athletes really need more protein than non-athletes?  They have exercise, a powerful anabolic stimulus.  More protein may improve performance or body composition, but they might not *need* it, in terms of nitrogen retention… there’s probably a study on this.

NEED =/= OPTIMIZATION

Continue reading

Share

Insulin, sympathetic nervous system, and nutrient timing.

Insulin secretion is attenuated by sympathetic nervous system activity; eg, via exercise.  Theoretically, exercising after a meal should blunt insulin secretion and I don’t think this will lessen the benefits of exercise, but rather enhance nutrient partitioning.   And this isn’t about the [mythical?] post-workout “anabolic window.”

Sympathetic innervation of pancreas: norepinephrine –> adrenergic receptor activation = decreased insulin secretion & increased lipolysis (Stich et al., 1999):

Stich insulin

Stich CAS

note how quickly catecholamines are cleared upon exercise cessation

Stich NEFA

Continue reading

Share