Tag Archives: empty calories

Saturated fat, cholesterol, and carbohydrates

“You catch more flies with honey…”

^^^good policy in general, but especially for debating in the realm of nutritional sciences.

 

A short while back, Nina Teicholz discussed low carb ketogenic diets and plant-based diets with John Mackey.  Although I disagree with the dichotomy (keto vs. plant-based), it’s well-worth a watch:

 

 

Three topics that could not be avoided in such a discussion: saturated fat, cholesterol, and carbohydrates.

 

 

Continue reading

Share

Good calories

Nuts are good calories.

I’m not a big fan of the omega-6 fatty acid linoleate, but that’s largely in the context of processed foods and confectioneries, where it’s more than likely no longer in it’s native form (Dc9,1218:2n6)… but in the context of unprocessed whole foods (eg, nuts), a little n6 is fine imo.

What are good calories?  They’re nutrient-dense and don’t generally lead to overeating… like the opposite of soda and junk food.  Nuts are low carb and many are highly ketogenic (eg, Brazils, macadamias, and pecans are ~90%fat).  Mr. Ramsey may even approve of macadamias because they have virtually zero PUFAs.

BONUS: magnesium, copper, selenium, many trace minerals and micronutrients, etc., etc.

I’m not saying you should crack open a can of Deluxe Mixed Nuts and sit down with nothing to do other than NOM NOM NOM ALL THE NUTZ.  I’m talking about a few nuts with a meal.  Possibly earlier in the day (coinciding with LIGHT); nuts are tryptophan-rich and this may improve melatonin onset -> good for circadian rhythms:

 

nuts and melatonin

 

 

Appetitive, dietary, and health effects of almonds consumed with meals or as snacks: a randomized controlled trial (Tan and Mattes, 2013)

In this study, the participants were instructed to eat a serving of almonds (~43g, ~245 kcal) daily for four weeks, at different times of the day (with breakfast, midmorning snack, lunch, or afternoon snack).

Regardless of when the almonds were consumed, the calories were practically completely compensated for.  The participants unwittingly ate less other stuff.  And in 3 out of 4 of the conditions, the almonds were so satiating that the participants actually ended up eating fewer overall calories.

That, in a nutshell, is what I call “good calories,” and I don’t think it’s too far from Taubes’ original definition… especially because it was accompanied with [modest] reductions in body fat (NS).  To be clear, they were instructed to eat more (in the form of almonds), but ended up eating less, BECAUSE ALMONDS.  This wasn’t a cross-sectional study, so no healthy user bias or other obvious confounders.

Further, the participants clearly weren’t obesity resistant.  They were overweight, obese, or lean with a strong family history of type 2 diabetes.  Sam Feltham would’ve been excluded.

This is not an isolated finding: another study showed a dose-dependent response to almonds: 28g or 42g consumed in the morning resulted in a compensatory reduction of hunger and total energy intake at lunch and dinner (Hull et al., 2014).  This wouldn’t happen with soda or junk food.

 

 

Another study tested ~350 kcal almonds daily for 10 weeks and concluded: “Ten weeks of daily almond consumption did not cause a change in body weight. This was predominantly due to compensation for the energy contained in the almonds through reduced food intake from other sources” (Hollis and Mattes, 2007).

Almonds vs. complex carbs? Almonds, FTW.

1 Brazil nut daily: “After 6 months, improvements in verbal fluency and constructional praxis (two measures of cognitive performance) were significantly greater on the supplemented group when compared with the control group.”    ONE FRIGGIN’ NUT!

 

http://www.dreamstime.com/-image11630100

 

Walnuts protect against alcohol-induced liver damage (in rats) (Bati et al., 2015) and may improve brain health (in humans) (Poulose et al., 2014).

Pistachios improve metabolic and vascular parameters (Kasliwal et al., 2015).

Meta-analysis (not an intervention study): nut consumption is associated with lower risk of all-cause mortality (Grosso et al., 2015). Yeah yeah yeah, I know, correlation =/= causation.  Whatever.

Nuts are good calories.  That’s all I’m saying.

 

Tl;dr: buy these and one of these, not this.

 

 

calories proper

 

 

Share

Protein “requirements,” carbs, and nutrient partitioning 

One way to determine protein requirements is the nitrogen balance technique.  If all of the nitrogen from dietary protein intake is equivalent to that lost via feces, urine, and sweat, then one is in nitrogen balance.  Growing children and pregnant women are usually in positive nitrogen balance, because much of the nitrogen is being invested in the growth of new tissue.  Cachectic cancer patients and sarcopenic elderly may be in negative nitrogen balance, because they’re losing lean mass.

Protein requirements to maintain nitrogen balance are largely dependent on total energy intake.  More calories in, less protein needed.  For people in negative energy balance (losing weight), this usually means more protein is required else muscle will be wasted.

Exercise lowers, not raises, protein “requirements,” because exercise is a potent anabolic stimulus; it helps preserve nitrogen at any level of dietary protein.  That’s not to say more won’t improve functional outcomes; just that it’s not “necessary” to prevent muscle loss.

Need =/= optimization.

Lastly, total grams, not percent of calories, is the most relevant way to talk about protein requirements in the context of nutrient partitioning and body composition.  This is just how protein operates.

Part 2.  The poor, misunderstood Randle Cycle

“The glucose-sparing effect of fat-derived fuels” …when you’re body starts burning more fat (and fat-derived fuels; ie, ketones), it’s use of glucose declines.  Thus, it’s “glucose-sparing” (spares glucose for the brain and obligatory glycolytic tissues, yada yada yada).

During starvation, much of that glucose comes from amino acids from skeletal muscle proteins, so it can also be phrased as: “the muscle-sparing effect of fat-derived fuels,”  which is equally biologically relevant, because similar to zeroglycemia, an unabated loss of muscle is incompatible with survival.

That is, in starvation, where the “protein” is skeletal muscle, not dietary (because starvation)… but what about when following a low carb or ketogenic diet – do ketones (fat-derived fuels) exert a muscle-sparing effect in this context?

One study compared the impact of two isonitrogenous diets, low carb (Diet A) vs. high carb (Diet B), on nitrogen balance and showed that, except at very high levels of energy intake, nitrogen balance was consistently better on high carb.

carbs vs protein req

 

However, 51 kcal/kg is the textbook number of kcals “required” for young, moderately active adults.  With this understanding, it could be interpreted to mean that nitrogen balance is better with low carb (Diet A) for people in energy balance; and better with high carb (Diet B) if energy deficit.

edit: 51 kcal/kg is for athletes; probably about 20-25% less for non-athletes.

Or not: in another study, a low carb diet promoted better nitrogen retention albeit less weight loss than an isocaloric low fat diet.  The low carb group lost slightly more fat mass, which, combined with nitrogen balance data, suggest modestly improved body composition.  The differences were small, because this was a “non-ad lib” isocaloric diet study.  In the absence of large differences in intake, the most we can expect from such studies are subtle alterations in nutrient partitioning (which are usually difficult to detect).

Cancer cachexia is a condition of severe muscle wasting, and one study set out to determine, more directly, if ketones spared muscle in this context.  The study only lasted one week, but I suspect a certain degree of expedited ketoadaptation because: 1) it was very low in carbohydrate; 2) the fat was primarily MCTs; 3) they supplemented oral ketones; and 4) energy expenditure is elevated in this population.  Both the control and ketogenic diets were modestly hypercaloric, but nitrogen balance was more favorably improved by the high carb diet, in contrast to the above studies.

Thus, ketones don’t work in the context of a hypercaloric diet; however, pharmacologically elevating ketones via intravenous infusion in fasting subjects does work (because it’s more like starvation).

The muscle-sparing effect of fat-derived fuels is conceptually and physiologically more relevant to starvation, not nutritional ketosis.

Part 3.  Protein “requirements”

Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial (Pasiakos et al., 2013) 

Protein intake was 1x, 2x, or 3x the RDA; fat was 30% of calories, and carbs made up the rest; on a weight maintenance diet and again on 30% calorie restriction (it was technically a 40% energy deficit, because they tried to ramp up energy expenditure with exercise).

RDA

All groups lost weight, but the ratio of fat to muscle loss was significantly higher in the 2x and 3x RDA groups, which amounted to ~120 and 185 grams of protein per day, respectively.  The 3x group didn’t fare as well, possibly, because that much protein induces a high degree of satiety – this group ended up consuming significantly fewer calories than the 2x group.  So the interplay between energy intake and protein requirements is back on the table: the added energy deficit apparently increased protein requirements to some level above 185 grams per day.  Not much, given the small difference in muscle loss, but increased none the less.

Side note: be cautious when interpreting a study about the amount of protein required for xyz endpoint, because such studies usually only measure one of many important markers, and they don’t report absolute changes in size, strength, etc.  Also, context matters.

For example, Moore and colleagues (2014) showed that 0.24 g/kg (17 grams for a 70 kg adult) was enough to maximally stimulate myofibrillar fractional synthetic rate (mFSR):

mFSR

However, in the contexts of three square meals and energy balance (or deficit), 0.72 g/kg (50 g/d) is woefully inadequate.  Point being: mFSR (in this case) is only one measurement and shouldn’t be extrapolated to total daily requirements.  Perhaps you could eat six 17 g servings in order to fully maximize 24-hour mFSR, or you could realize that going above what saturates mFSR isn’t a bad thing, or wasteful.  mFSR is just one of many measurements of muscle protein balance.

My opinion

For those who need exact numbers, hopefully one point I’ve made is that there’s no answer to this question.  I’d guess that most people “need” 100+ grams of protein per day (more if losing weight), and 100 grams is probably too much in one sitting.  Also, need =/= optimization, and context matters.

Nutritional ketosis doesn’t appear to reduce the amount of dietary protein necessary to maintain lean mass.  The muscle-sparing of fat-derived fuels works during starvation; in other contexts, all bets are off.

calories proper

Share

Paleo Plants and Carnivory

From what I gather, it’s been difficult to pinpoint the role of plants in the diet of our ancestors for a variety of reasons.  For example, evidence of plants on cooking tools and dental remains is suggestive but doesn’t disprove the possibility that said evidence came from preparing the plants for some other purpose (eg, tools, weapons, or medicine), or that the stomach contents of an herbivore was ingested (which gets partial credit).

That said, after reviewing a few studies on the topic (see below), it’s safe to say that plants were eaten, probably frequently, and the types & quantities varied seasonally & geographically.  Collectively, the data suggest we aren’t carnivores.

…you had to have something to hold you over until the next fish fell prey to your deadly hunting spear…  

Continue reading

Share

Lipid Hypothesis 2.0: Eat Butter

The original lipid hypothesis stated, more or less, that lowering blood cholesterol would reduce premature mortality from heart disease.  At the time, it was thought that dietary cholesterol and saturated fat increased the ‘bad’ type of blood cholesterol, so the advice was to restrict those foods.  All of that was wrong.

Time

Lipid Hypothesis 2.0: Eat Butter

Continue reading

Share

Circadian disruptions impact behavior and metabolism in a tissue-specific manner.

The control of circadian gene expression is complex, with layer upon layer of suppressors and enhancers, numerous transcription factors, and a lot of interactions.  A gross oversimplification: Clock and Bmal1 are positive regulators of circadian gene expression; Per and Cry are negative (you don’t really need to know any of this).

 

Some pretty cool progress has been made in examining the effects of global and tissue-specific deletion of circadian rhythm-related transcription factors.  Bear with me :)

For example, global Bmal1 knockout mice (ie, mice that don’t express Bmal1 anywhere in their whole body.  Zero Bmal1.  Nil.) (Lamia et al., 2008).  These mice are obese, and exhibit impaired glucose tolerance yet improved insulin sensitivity.

Continue reading

Share

Does junk food make you lazy?

From Times LIVE: “Does junk food make you lazy?” 

“A diet rich in processed foods and fat – and the extra weight that comes along with it – may actually cause fatigue, a lack of motivation and decreased performance, according to a recent study involving lab rats… excessive consumption of processed and fat-rich foods affects our motivation as well as our overall health.”

(this is categorically false as both diets used in the study being discussed were very low in fat.)

And from Psych Central: “Rat study shows junk food can make you lazy

The theory itself isn’t too far-fetched: a crap diet can cause weight gain and reduced energy expenditure, or a tendency to minimize any kind of physical activity… instead of: “’laziness’ causes obesity.”  And whether or not it’s true, unlike what some would have you believe, this wasn’t the study to prove it.

Continue reading

Share

Insulin, dietary fat, and calories: context matters!

Jane Plain recently wrote a great article about the relationship between insulin, dietary fat, and calories.  There are a lot of data on this topic, which collectively suggest: context matters! 

For example,

Insulin and ketone responses to ingestion of MCTs and LCTs in man. (Pi-Sunyer et al., 1969)

14 healthy subjects, overnight fasted; dose: 1g/kg.

In brief, MCTs are more insulinogenic than corn oil.  But it’s not a lot of insulin.  Really.  Enough to inhibit lipolysis, perhaps, but that’s not saying much… & certainly not enough to induce hypoglycemia.

Pi-Sunyer MCT Corn oil

Continue reading

Share

Protein Leverage Hypothesis

Inverse Carb Leverage HypothesisTM

Protein Leverage Hypothesis: Dude eats 15% protein on a 2000 kcal diet (75 g protein).  Exchange 25 grams of protein with carb, and he’s now eating 10% protein on a 2000 kcal diet (50 g protein).  Theory states Dude will increase total food intake to get back those 25 grams.

Ergo, Protein Leverage Hypothesis:

protein leverage hypothesis

Disclaimer: I don’t care much for the Protein Leverage Hypothesis.  It might be true, but that doesn’t mean it matters.  It works well in rodents, but obese patients eat tons of protein.  The rebuttal to this is that the protein in their diet is too diluted with other [empty] calories.  They’re overeating because of low protein %.

The flipside, confirmed ad nauseam in rodent studies, is that frank protein deficiency increases food intake.  Frank protein deficiency means negative nitrogen balance & tissue loss… not just skeletal muscle; organs, too.  Incompatible with survival.

Feed someone a low protein low fat diet, they get hungry.  If it’s ad libitum, they eat more.

Continue reading

Share

Nutrition Disinformation III

but they actually get it right this time.   Big HT to George Henderson for bringing this ms to my attention.

In Nutrition Disinformation, Part I, the Mediterranean diets employed by Estruch & colleagues were discussed.  The study subjects’ need for antidiabetic drugs, insulin, and anti-platelets all increased over the course of 5 years.  The media and even the authors themselves reported the opposite, touting the benefits of Mediterranean diets.  Thus begat the Nutrition Disinformation series.

Nutrition Disinformation 2.0 was a follow-up to an older post on the Look AHEAD study, when the results were finally published.  The intensive lifestyle intervention consisted of a pharmaceutical-grade low fat diet (ie, LFD + a little bit of Orlistat), and exercise.  By the end of 10 years, medication use was modestly lower in the intensive lifestyle group compared to controls, but it was markedly increased from baseline.  Therefore, I deemed it egregious to say their intervention was “healthy.”  In the context of Nutrition Disinformation, “healthy” means you’re getting better.  The need for insulin, statins, and anti-hypertensives should decline if you’re getting better.

In part 3 of the series, Yancy must’ve been following the Nutrition Disinformation series :) and decided to conduct a subgroup analysis on the patients in his previous low carb vs. low fat + Orlistat study.  Weight loss was roughly similar, but all other biomarkers improved more on low carb.  In the new publication, Yancy analyzed data selectively from the diabetic patients in his original study to generate a “Medication Effect Score (MES).”  MES is based on what percentage of  the maximum dose was a patient given, and adjusted for the median decline in HbA1c experienced by patients on said drug.  A bit convoluted, but I’m on board (at least tentatively).

Continue reading

Share