Tag Archives: empty calories

FOOD PROFILE

Hey Fam, announcement: I’m moving to Patreon soon — will still post about 4-5 articles per month with at least 1 open to the public. The rest will be for Patrons. I’m still trying to figure it out and I’m open to suggestions!

 

I loved this – when describing the two study diets, which differed markedly in carb content (10% vs. 53%), the authors said they were similar in energy, protein, and “FOOD PROFILE,” meaning low-processed, lower-glycemic foods.

Non-industrial foods.

Hunger-free Diet(s).

BOOM!

Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial (Veum et al., 2016)

 

What happens when you give up industrial foods and start following a Hunger-free Diet (regardless of carbz)?

 

 

EVERYBODY LOSES WEIGHT

 

 

And le saturated fat? Industrial foods are the problem, not saturated fat. One group went from 48 to 31 grams per day (LFHC), the other group went from 42 to 81 (VLCHF): all metabolic parameters improved in both groups.

 




 

Even their livers shrank:

 

 

My only qualm: everyone lost a bit of muscle. NOT SURPRISING when you cut calories & protein and don’t exercise. Protein dropped by about ~25 grams in both groups. When you cut calories, you need to up protein or start lifting heavy shit otherwise you’ll lose muscle. The ketonez won’t help.

 

 

calories proper

 

Become a Patron!

 

 

Save

Save

Save

Save

Share

Ketones inhibit lipolysis

Petro just posted a brief article about acipimox & the insulin hypothesis.  Similar to insulin’s forte, acipimox inhibits lipolysis.  This leads to expansion of adipose tissue, and eventually, weight gain.

Acipimox acts on the same receptor as niacin and ketones, GPR109a.  That is, all three of those agents inhibit lipolysis.  We’ve discussed some of the implications of this on fuel partitioning HERE.

 

ketone-supp-physiology

Continue reading

Share

The Hunger-Free Diet(s)

It started out as “lose weight without hunger on LCHF” and went all the way to “effortless fasting on keto.”  Works for some and it might be true, but the same can be said for low fat diets!  The key, I think, in both contexts, is simple: fewer processed & refined foods… something the Paleo movement got right, imo (although I still think many low-calorie sweeteners are way less unhealthy than HFCS & sugar).

The logic:

1) add “good calories” like almonds to your diet and appetite spontaneously compensates by eating less other stuff: energy neutral

2) you don’t compensate for added “bad calories” like sugar-sweetened beverages: positive energy balance

3) remove bad calories from your diet and you don’t compensate by eating more other stuff: negative energy balance

 

Book: Good Calories, Bad Calories

 

Continue reading

Share

Keto myths & facts

:::begin rant:::

Trigger warning?  Maybe.

Disclaimer: I’m pro-LC (P<0.05), but not anti-LF because LF works better than LC for some people.  And with the exception of things like keto for neurological issues, I think macros take a back seat to many other factors.

Myths: carbs cause insulin resistance (IR), diabetes, and metabolic syndrome.  Carbs are intrinsically pathogenic.  If a healthy person eats carbs, eventually they’ll get sick.

And the only prescription is more keto.

 

cowbell

 

And of course all of this could’ve been prevented if they keto’d from the get-go.

Proponents of these myths are referring to regular food carbs, not limited to things like Oreo Coolattas (which would be more acceptable, imo).  Taubes, Lustig, Attia, and many others have backed away from their anti-carb positions, yet the new brigade proceeds and has even upped the ante to include starvation.  Because “LC = effortless fasting?”

Does this sound sane?

“No carbs ever,
no food often…
otherwise diabetes.”

 

 

oreo-coolatta

 

no one in their right mind would say lentils & beans cause diabetes

 

Continue reading

Share

Insulin resistance and obesity

Some people believe insulin resistance (IR) causes obesity, and they are not pleased when I say this is actually a controversial topic in the field…

“Bill isn’t toeing the company line.  Again.”

So I asked a simple question: if IR causes obesity, how?

 

 

The Common Response: 1) IR -> 2) hyperinsulinemia -> 3) more insulin = more fat mass.

However, this is flawed.

Easiest rebuttal (somewhat of a strawman, but whatevs): Barbara Corkey and her group has done a lot of work showing that insulin hypersecretion (caused by dietary additives, preservatives, weird chemicals, etc.) may actually precede & causes IR… not enough insulin hypersecretion to induce hypoglycemia, just enough to induce IR.

So that basically breaks the 1st step in the Common Response, but doesn’t really disprove the possibility that IR still causes obesity (or can cause obesity).

In any case, check out Corkey’s 2011 Banting Lecture.  Highly recommended, a lot of food for thought.

 

Continue reading

Share

Hey CICO, I’m playing by your rules.

Brief background: the notorious Ebbeling study of 2012 showed an apparent metabolic advantage of a ketogenic diet.  After losing some weight, participants were assigned to low fat (LF), low GI, or ketogenic diets.  As expected, energy expenditure (EE) declined in all groups after weight loss.

 

Continue reading

Share

the insulin-obesity hypothesis is under attack

…but it isn’t dead, imo, because that would be really hard to do.  Like, seriously.

 

 

side note: please consider the modern views of Taubes, Lustig, Gardner, Attia, and others on Carbs™.  They’re less “Carbs-cause-obesity, keto-for-all, etc.,” and more thinking it might not be Carbs™ per se, but rather processed and refined foods.  And #context…  And I tend to agree at the moment (nuances and caveats are subject to change, as more evidence accumulates).

 

disclaimer: I haven’t seen the full text of Hall’s recent study, but that’s not really relevant to what I want to discuss.  In other words, I don’t think the full text will provide any additional details on this particular point.

 




 

Tl;dr: this study was not designed to prove or disprove metabolic advantage or the insulin-obesity hypothesis.

It’s in the study design:  four weeks of low fat followed by four weeks of low carb.  We KNOW that weight loss slows over time (especially if calories are controlled, as they were in this study).  It has to do with the order of treatments.

Weight loss-slowing over time in the Minnesota Experiment:

 

 

Minn-Starvation-weight

 

Continue reading

Share

Saturated fat, cholesterol, and carbohydrates

“You catch more flies with honey…”

^^^good policy in general, but especially for debating in the realm of nutritional sciences.

 

A short while back, Nina Teicholz discussed low carb ketogenic diets and plant-based diets with John Mackey.  Although I disagree with the dichotomy (keto vs. plant-based), it’s well-worth a watch:

 

 

Three topics that could not be avoided in such a discussion: saturated fat, cholesterol, and carbohydrates.

 

 

Continue reading

Share

Good calories

Nuts are good calories.

I’m not a big fan of the omega-6 fatty acid linoleate, but that’s largely in the context of processed foods and confectioneries, where it’s more than likely no longer in it’s native form (Dc9,1218:2n6)… but in the context of unprocessed whole foods (eg, nuts), a little n6 is fine imo.

What are good calories?  They’re nutrient-dense and don’t generally lead to overeating… like the opposite of soda and junk food.  Nuts are low carb and many are highly ketogenic (eg, Brazils, macadamias, and pecans are ~90%fat).  Mr. Ramsey may even approve of macadamias because they have virtually zero PUFAs.

BONUS: magnesium, copper, selenium, many trace minerals and micronutrients, etc., etc.

I’m not saying you should crack open a can of Deluxe Mixed Nuts and sit down with nothing to do other than NOM NOM NOM ALL THE NUTZ.  I’m talking about a few nuts with a meal.  Possibly earlier in the day (coinciding with LIGHT); nuts are tryptophan-rich and this may improve melatonin onset -> good for circadian rhythms:

 

nuts and melatonin

 

 

Appetitive, dietary, and health effects of almonds consumed with meals or as snacks: a randomized controlled trial (Tan and Mattes, 2013)

In this study, the participants were instructed to eat a serving of almonds (~43g, ~245 kcal) daily for four weeks, at different times of the day (with breakfast, midmorning snack, lunch, or afternoon snack).

Regardless of when the almonds were consumed, the calories were practically completely compensated for.  The participants unwittingly ate less other stuff.  And in 3 out of 4 of the conditions, the almonds were so satiating that the participants actually ended up eating fewer overall calories.

That, in a nutshell, is what I call “good calories,” and I don’t think it’s too far from Taubes’ original definition… especially because it was accompanied with [modest] reductions in body fat (NS).  To be clear, they were instructed to eat more (in the form of almonds), but ended up eating less, BECAUSE ALMONDS.  This wasn’t a cross-sectional study, so no healthy user bias or other obvious confounders.

Further, the participants clearly weren’t obesity resistant.  They were overweight, obese, or lean with a strong family history of type 2 diabetes.  Sam Feltham would’ve been excluded.

This is not an isolated finding: another study showed a dose-dependent response to almonds: 28g or 42g consumed in the morning resulted in a compensatory reduction of hunger and total energy intake at lunch and dinner (Hull et al., 2014).  This wouldn’t happen with soda or junk food.

 

 

Another study tested ~350 kcal almonds daily for 10 weeks and concluded: “Ten weeks of daily almond consumption did not cause a change in body weight. This was predominantly due to compensation for the energy contained in the almonds through reduced food intake from other sources” (Hollis and Mattes, 2007).

Almonds vs. complex carbs? Almonds, FTW.

1 Brazil nut daily: “After 6 months, improvements in verbal fluency and constructional praxis (two measures of cognitive performance) were significantly greater on the supplemented group when compared with the control group.”    ONE FRIGGIN’ NUT!

 

http://www.dreamstime.com/-image11630100

 

Walnuts protect against alcohol-induced liver damage (in rats) (Bati et al., 2015) and may improve brain health (in humans) (Poulose et al., 2014).

Pistachios improve metabolic and vascular parameters (Kasliwal et al., 2015).

Meta-analysis (not an intervention study): nut consumption is associated with lower risk of all-cause mortality (Grosso et al., 2015). Yeah yeah yeah, I know, correlation =/= causation.  Whatever.

Nuts are good calories.  That’s all I’m saying.

 

Tl;dr: buy these and one of these, not this.

 

calories proper

 

Become a Patron!

 

 

Share

Protein “requirements,” carbs, and nutrient partitioning 

One way to determine protein requirements is the nitrogen balance technique.  If all of the nitrogen from dietary protein intake is equivalent to that lost via feces, urine, and sweat, then one is in nitrogen balance.  Growing children and pregnant women are usually in positive nitrogen balance, because much of the nitrogen is being invested in the growth of new tissue.  Cachectic cancer patients and sarcopenic elderly may be in negative nitrogen balance, because they’re losing lean mass.

Protein requirements to maintain nitrogen balance are largely dependent on total energy intake.  More calories in, less protein needed.  For people in negative energy balance (losing weight), this usually means more protein is required else muscle will be wasted.

Exercise lowers, not raises, protein “requirements,” because exercise is a potent anabolic stimulus; it helps preserve nitrogen at any level of dietary protein.  That’s not to say more won’t improve functional outcomes; just that it’s not “necessary” to prevent muscle loss.

Need =/= optimization.

Lastly, total grams, not percent of calories, is the most relevant way to talk about protein requirements in the context of nutrient partitioning and body composition.  This is just how protein operates.

Part 2.  The poor, misunderstood Randle Cycle

“The glucose-sparing effect of fat-derived fuels” …when you’re body starts burning more fat (and fat-derived fuels; ie, ketones), it’s use of glucose declines.  Thus, it’s “glucose-sparing” (spares glucose for the brain and obligatory glycolytic tissues, yada yada yada).

During starvation, much of that glucose comes from amino acids from skeletal muscle proteins, so it can also be phrased as: “the muscle-sparing effect of fat-derived fuels,”  which is equally biologically relevant, because similar to zeroglycemia, an unabated loss of muscle is incompatible with survival.

That is, in starvation, where the “protein” is skeletal muscle, not dietary (because starvation)… but what about when following a low carb or ketogenic diet – do ketones (fat-derived fuels) exert a muscle-sparing effect in this context?

One study compared the impact of two isonitrogenous diets, low carb (Diet A) vs. high carb (Diet B), on nitrogen balance and showed that, except at very high levels of energy intake, nitrogen balance was consistently better on high carb.

carbs vs protein req

 

However, 51 kcal/kg is the textbook number of kcals “required” for young, moderately active adults.  With this understanding, it could be interpreted to mean that nitrogen balance is better with low carb (Diet A) for people in energy balance; and better with high carb (Diet B) if energy deficit.

edit: 51 kcal/kg is for athletes; probably about 20-25% less for non-athletes.

Or not: in another study, a low carb diet promoted better nitrogen retention albeit less weight loss than an isocaloric low fat diet.  The low carb group lost slightly more fat mass, which, combined with nitrogen balance data, suggest modestly improved body composition.  The differences were small, because this was a “non-ad lib” isocaloric diet study.  In the absence of large differences in intake, the most we can expect from such studies are subtle alterations in nutrient partitioning (which are usually difficult to detect).

Cancer cachexia is a condition of severe muscle wasting, and one study set out to determine, more directly, if ketones spared muscle in this context.  The study only lasted one week, but I suspect a certain degree of expedited ketoadaptation because: 1) it was very low in carbohydrate; 2) the fat was primarily MCTs; 3) they supplemented oral ketones; and 4) energy expenditure is elevated in this population.  Both the control and ketogenic diets were modestly hypercaloric, but nitrogen balance was more favorably improved by the high carb diet, in contrast to the above studies.

Thus, ketones don’t work in the context of a hypercaloric diet; however, pharmacologically elevating ketones via intravenous infusion in fasting subjects does work (because it’s more like starvation).

The muscle-sparing effect of fat-derived fuels is conceptually and physiologically more relevant to starvation, not nutritional ketosis.

Part 3.  Protein “requirements”

Effects of high-protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial (Pasiakos et al., 2013) 

Protein intake was 1x, 2x, or 3x the RDA; fat was 30% of calories, and carbs made up the rest; on a weight maintenance diet and again on 30% calorie restriction (it was technically a 40% energy deficit, because they tried to ramp up energy expenditure with exercise).

RDA

All groups lost weight, but the ratio of fat to muscle loss was significantly higher in the 2x and 3x RDA groups, which amounted to ~120 and 185 grams of protein per day, respectively.  The 3x group didn’t fare as well, possibly, because that much protein induces a high degree of satiety – this group ended up consuming significantly fewer calories than the 2x group.  So the interplay between energy intake and protein requirements is back on the table: the added energy deficit apparently increased protein requirements to some level above 185 grams per day.  Not much, given the small difference in muscle loss, but increased none the less.

Side note: be cautious when interpreting a study about the amount of protein required for xyz endpoint, because such studies usually only measure one of many important markers, and they don’t report absolute changes in size, strength, etc.  Also, context matters.

For example, Moore and colleagues (2014) showed that 0.24 g/kg (17 grams for a 70 kg adult) was enough to maximally stimulate myofibrillar fractional synthetic rate (mFSR):

mFSR

However, in the contexts of three square meals and energy balance (or deficit), 0.72 g/kg (50 g/d) is woefully inadequate.  Point being: mFSR (in this case) is only one measurement and shouldn’t be extrapolated to total daily requirements.  Perhaps you could eat six 17 g servings in order to fully maximize 24-hour mFSR, or you could realize that going above what saturates mFSR isn’t a bad thing, or wasteful.  mFSR is just one of many measurements of muscle protein balance.

My opinion

For those who need exact numbers, hopefully one point I’ve made is that there’s no answer to this question.  I’d guess that most people “need” 100+ grams of protein per day (more if losing weight), and 100 grams is probably too much in one sitting.  Also, need =/= optimization, and context matters.

Nutritional ketosis doesn’t appear to reduce the amount of dietary protein necessary to maintain lean mass.  The muscle-sparing of fat-derived fuels works during starvation; in other contexts, all bets are off.

calories proper

Share