Category Archives: Ketosis

Circadian phase: role of diet

Circadian phase advance: going to bed earlier, waking up earlier.  Blue blockers at sunset, bright light at sunrise.  Flying east.  Autumn.

Circadian phase delay: staying up late, sleeping in.  Flying west.  Spring.  Using smart phones, tablets, and iPads in bed at night.  Light pollution.

Relative to adolescents, infants and children are circadian phase advanced.  This is part of what is fueling the movement to delay high school start times.  Kids are mentally better prepared to work later in the day.  With early school start times, performance is down in the morning, but they kill it on video games after school.  Delaying start time by an hour won’t totally fix this, but could help.

Edit: it seems like a similar movement is happening for adults, too – ie, starting work an hour later.

I’m not saying everything healthwise deteriorates with age, but the gradual circadian phase delay that occurs with aging and overusing blue light-emitting devices at night might not be a good thing.  If a particular diet can promote phase advance, why not? (at least it’d be countering the phase delay).

 

 

Possible role of diet

In the top half of the figure below, it’s mice fed a “normal diet (ND) (high carbohydrate)” (Oishi et al., 2012).  During normal “light dark (LD)” conditions, movement and feeding is concentrated in the active phase.  When the lights are permanently turned off in “dark dark (DD)” conditions, the free-running circadian clock begins to shift slightly forward (phase advance), but nothing drastic.

 

Phase advance high protein diet

 

In the bottom half of the figure, during normal LD conditions the mice are switched to a low carb, high protein diet.  Note how activity shifts leftward (phase advance) during the LD condition.  When low carb, high protein-fed mice are then switched to DD, we can see a clear circadian phase advance.

 

High protein metabolism

 

Low carb, high protein-fed mice ate more but didn’t get fat; physical activity and body temperature were unchanged.  But this post isn’t about that.  Gene expression of key circadian transcription factors in liver and kidney exhibited phase advances.

The next figure is study to the one above, although instead of switching to a low carb, high protein diet, the mice were switched to a low carb, high fat diet (Oishi et al., 2009).

Note the similarity of control (high carb diet) mice: gradual phase advance when switched to DD:

 

Ketogenic circadian phase

 

The phase advance is markedly enhanced in low carb, high fat-fed mice.

The circadian regulation of activity is similarly affected by low carb, high protein, and low carb, high fat diets.  What do those two diets have in common?

A bit of a stretch? carbohydrate restriction mimics some aspects of avoiding artificial light at night and being young: phase advance.  Whether the carbs are replaced with protein or fat doesn’t seem to matter in this aspect.

 

Wanna know what else can do this?  FOOD.  The food-entrainable oscillator (FEO) kickstarts circadian rhythms.  Rodent studies have shown that timed feeding, regardless of the actual time, consistently realigns the circadian expression of numerous genes (eg, Polidarova et al., 2011 and Sherman et al., 2012).

So what’s the hack?  Food: do more of it, earlier in the day.  Phase advance.  Kind of like avoiding artificial light at night or being young.

 

Oh, and mice exposed to dim light at night (who are pretty much metabolically screwed)? phase DELAYED (Fonken et al., 2010).

 

Dim light at night phase delay

 

 

 

calories proper

 

Share

Ketone bodies as signaling metabolites

*non sequiter*

One of the ways dietary carbohydrate contributes to liver fat is via ChREBP: “carbohydrate-response element binding protein.”  It responds to a glucose metabolite and activates transcription of lipogenic genes.  Insulin helps.  Ketones do the opposite (Nakagawa et al., 2013), by inhibiting the translocation of ChREBP into the nucleus where it does it’s dirty work:

 

ChREBP

 

More interestingly, ketones are histone deacetylase inhibitors (HDACi)… this leads to more histone acetylation.  Benefits of fasting sans fasting?  Modulating of acetylation is a MAJOR regulator of circadian rhythmicity.

Butyrate is another HDACi, so have some fibrous plant foods with your red wine and dark chocolate.  Anti-aging (mostly worm studies, but still).

 

Continue reading

Share

“Afternoon diabetes” and nutrient partitioning

Don’t exacerbate afternoon diabetes with afternoon carbs.

Skeletal Muscle
As discussed previously [at length], insulin sensitivity in skeletal muscle follows a circadian pattern: starts out high in the morning and wanes throughout the day.

Diurnal variation in oral glucose tolerance: blood sugar and plasma insulin levels, morning, afternoon and evening (Jarrett et al., 1972)

 

impaired circadian glucose tolerance in the morning

 

Diurnal variation in glucose tolerance and insulin secretion in man (Carroll and Nestel, 1973)

Circadian variation of the blood glucose, plasma insulin and human growth hormone levels in response to an oral glucose load in normal subjects (Aparicio et al., 1974)

Adipose Tissue
And insulin sensitivity of adipose tissue goes in the opposite direction: starts out low, and increases as the day progresses.

Diurnal variations in peripheral insulin resistance and plasma NEFA: a possible link? (Morgan et al., 1999)
The studies were standardized for a period of fasting, pre-test meal, and exercise… Following insulin, NEFA fell more slowly in the morning (149 uM/15 min) than in the evening (491 uM/15 min).

Diurnal variation in glucose tolerance: associated changes in plasma insulin, growth hormone, and non-esterified fatty acids (Zimmet et al., 1974)
Adipose tissue insulin sensitivity is greater in the evening.  FFA are higher, and get shut down more rapidly, after a carb meal in the evening.

Summary: to minimize blood glucose excursions and proclivity for fat storage, eat more calories earlier in the day; this is circadian nutrient timing.  And according to the Alves study, a low-carb protein-rich dinner best preserves lean tissue during weight loss.

Continue reading

Share

Ketoadaptation and physiological insulin resistance

This is where the magic happens.

Rat pups, fed a flaxseed oil-based ketogenic diet from weaning onward – note the drop-off in ketones after 2 weeks (Likhodii et al., 2002):

flaxseed ketogenic diet

What happened on day 17?

Patient history: these rats have been “low carb” their whole lives.

Side note: flaxseed oil is very ketogenic! (Likhodii et al., 2000):

ketogenic rodent diets

Flaxseed oil-based ketogenic diet produced higher ketones than 48h fasting; the same can’t be said for butter or lard.  PUFAs in general are more ketogenic than saturated fats in humans, too (eg, Fuehrlein et al., 2004):Saturated polyunsaturated ketones

Crisco keto (adult rats) (Rho et al., 1999):

shortening-based ketogenic diet

suspect those two rogue peaks were experiment days…

Continue reading

Share

Cyclical ketosis, glycogen depletion, and nutrient partitioning

Meal & exercise timing in the contexts of “damage control” and nutrient partitioning are frequent topics on this blog.  I generally opt for a pre-workout meal, but nutrient timing hasn’t panned out very well in the literature.  That’s probably why I’m open to the idea of resistance exercise in the fasted state.  A lot of pseudoscientific arguments can be made for both fed and fasted exercise, and since a few blog posts have already been dedicated to the former, this one will focus on the latter.

The pseudoscience explanation is something like this: since fatty acids are elevated when fasting, exercise in this condition will burn more fat; and chronically doing so will increase mitochondria #.  The lack of dietary carbs might enhance exercise-induced glycogen depletion, which itself would bias more post-workout calories toward glycogen synthesis / supercompensation.  Much of this is actually true, but has really only been validated for endurance training (eg, Stannard 2010, Van Proeyen 2011, & Trabelsi 2012; but not here Paoli 2011)… and the few times it’s been studied in the context of resistance exercise, no effect (eg, Moore 2007 & Trabelsi 2013).  However, there are some pretty interesting tidbits (beyond the pseudoscience) which suggest how/why it might work, in the right context.

Exercising fasted or fed for fat loss?  Influence of food intake on RER and EPOC after a bout of endurance training (Paoli et al., 2011)

John Kiefer, an advocate of resistance exercise in the fasted state, mentioned: “the sympathetic nervous system responds quicker to fasted-exercise. You release adrenaline faster. Your body is more sensitive particularly to the fat burning properties of adrenaline and you get bigger rushes of adrenaline.”

Much of this is spot on.  That is, ketogenic dieting and glycogen depletion increase exercise-induced sympathetic activation and fat oxidation (eg, Jansson 1982, Langfort 1996, & Weltan 1998).

The question is: can this improve nutrient partitioning and physical performance?  Magic 8-Ball says: “Signs point to yes.”  I concur.

Contrary to popular beliefs, glycogen depletion per se doesn’t harm many aspects of physical performance.  A lot of fuel systems are at play; you don’t need a full tank of glycogen.

Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men (Langfort et al., 1996)

High-intensity exercise performance is not impaired by low intramuscular glycogen (Symons & Jacobs, 1989)

Increased fat oxidation compensates for reduced glycogen at lower exercise intensities (eg, Zderic 2004), and ketoadaptation may do the same at higher intensities.

Continue reading

Share

Ketosis in an evolutionary context

Humans are unique in their remarkable ability to enter ketosis.  They’re also situated near the top of the food chain.  Coincidence?

During starvation, humans rapidly enter ketosis; they do this better than king penguins, and bears don’t do it at all.

Starvation ketosis

 

Starvation ketosis

Humans maintain a high level of functionality during starvation.  We can still hunt & plan; some would even argue it’s a more finely tuned state, cognitively.  And that’s important, because if we became progressively weaker and slower, chances of acquiring food would rapidly decline.

Perhaps this is why fasting bears just sleep most of the time: no ketones = no bueno..?

Observation: chronic ketosis is relatively rare in nature.  Angelo Coppola interpreted that to mean animals may have evolved a protective mechanism against ketosis (if you were following along, please let me know if this is a misrepresentation).

Continue reading

Share

More on physical performance and ketoadaptation

The various studies on how low carbohydrate diets impact physical performance are very nuanced.  Here’s what I mean by that.

Exhibit A. Phinney 1980

Phinney 1980

In this [pioneering] study, obese patients were subjected to a variety of performance assessments in a baseline period, then after 1 and 6 weeks of weight loss via protein-sparing modified fast (1.2 g/kg ideal body weight from lean meat, fish, or fowl; probably around 80 grams of protein/d, 500-750 kcal/d). They lost a lot of weight, 23 pounds on average, two-thirds of which was body fat. There was no exercise intervention, just the performance assessments.

During the ‘exercise to exhaustion’ treadmill exercise, RQ steadily declined from baseline to week 1 to week 6, indicating progressively more reliance on fat oxidation.  This was confirmed via muscle glycogen levels pre- and post-exercise: during the baseline testing, they declined by 15%; after 6 weeks of ketoadaptation, however, they only declined by 2%, while ‘time to exhaustion’ increased by 55%.  After only 1 week of the diet, time to exhaustion plummeted, as expected, by 20%.

This was, as mentioned above, a pioneering study in the field of ketoadaptation. It also challenges one of the prevailing theories of ‘fatigue’ …while carb-adapted, the subjects fatigued after 168 minutes, with muscle glycogen levels of 1.29 (reduced by 15%); while ketoadapted, they fatigued after 249 minutes with muscle glycogen levels of 1.02 (reduced by 2%).  In other words, they had less glycogen to begin with, used less glycogen during exercise, and performed significantly better (running on fat & ketones).

Exhibit B. Vogt 2003

Highly trained endurance athletes followed a high fat (53% fat, 32% carbs) or high carb (17% fat, 68% carbs) diet for 5 weeks in a randomized crossover study. In contrast to Phinney’s study, these participants were: 1) highly trained; and 2) exercised throughout the study.

Maximal power output and VO2max during a similar ‘time to exhaustion’ test was similar after both diet periods.  Same for total work output during a 20 minute ‘all-out’ cycling time trial and half-marathon running time.  Muscle glycogen was modestly, albeit statistically non-significantly lower after ketoadaption; however, ketoadapted athletes relied on a higher proportion of fat oxidation to fuel performance as indicated by lower RQ at every level of exercise intensity:

Vogt RQ

Again, this is the essence of ketoadaptation. Physical performance as good as or better using fat and fat-derived fuels.

One reason Phinney’s glycogen-depeleted ketoadapted subjects may have done so well is their reliance on ketones (probable) and intramyocellular lipids (IMCL) (possible).  In Vogt’s study, IMCL increased from 0.69 to 1.54% after ketoadaptation…

Also, food intake and body fat declined, and training volume increased in the low fat group; whereas food intake increased, and body fat and training volume declined in the high fat group.  Reminiscent of anything?

High fat, low carb -> eat more, exercise less, STILL LOSE BODY FAT.

Vogt data

Sorcery?  No.  Diet impacts more than just mood and body composition – resting energy expenditure increased in the ketogenic dieters.  This isn’t an isolated finding.

Exhibit C. Fleming 2003 

This was another study in non-trained athletes, consuming high fat (61% fat) or control (25% fat) diets for 6 weeks.  The tests were the 30-second Wingate, to examine supramaximal performance, and a 45-minute timed ride, to examine submaximal performance.

This study differed from the previous two in several significant ways.  For starters, peak power output declined in both groups, slightly more so in the high fat group (-10% vs. -8%).  Furthermore, RQ didn’t wasn’t significantly lower during this test in the high fat group, which possibly suggests they weren’t properly ketoadapted.  In Phinney’s study, the large energy deficit ensured ketoadaptation; this study lacked that aspect, somewhat more similar to Vogt’s, although unlike Vogt’s, these participants weren’t athletes which presumably makes ketoadaptation more difficult.

There are many factors at play… I wasn’t kidding when I said these studies are very nuanced!

Exhibit D. the infamous, Paoli 2012 

These were ‘elite artistic gymnasts,’ who could likely beat you in a race running backwards.  The ketogenic phase consisted of 55% fat and much more protein than the control phase (39% fat; protein: 41% vs. 15%). The significantly higher protein content was modestly offset by slightly more calories in the control phase, which reduces the amount of protein required to maintain nitrogen balance.

In this study, performance was, for the most part, ‘maintained,’ with relative increases in a few of the tests; eg, the “legs closed barrier.”  Changes in body composition were more robust: significantly reduced body fat and increased lean body mass after 30 days of ketogenic dieting (with their normal exercise routine).

Paoli data

The major confounder in this study was the use of an herbal cocktail only in the ketogenic diet group; despite this, the results are largely in line with the other studies.  For more on this study, see here.

Exhibit E. the most dramatic one to date: Sawyer 2013 

Please see here for the details, but in brief, strength-trained athletes showed improvements in high intensity exercise performance after only 7 days of carbohydrate restriction.  The nuances of this particular study are discussed more here.

barbell

Collectively, these studies show that physical performance in both endurance and high intensity realms does not always suffer, can be maintained, and in some cases is improved by ketogenic dieting.  Important factors are duration (to ensure adequate ketoadaptation), energy balance, and regular physical activity (athletes and regular exercisers can adapt to burning fat much quicker than sedentary folks).

 

calories proper

Share

Diet study: American Diabetes Association vs. Low Carb Ketogenic

A randomized pilot trial of a moderate carbohydrate diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2 diabetes mellitus or prediabetes (Saslow et al., 2014)

Disclaimer: this study was not ground-breaking; it was confirmation of a phenomenon that is starting to become well-known, and soon to be the status quo. That is, advising an obese diabetic patient to reduce their carb intake consistently produces better results than advising them to follow a low fat, calorie restricted diet.

The two diets:

Moderate carbohydrate diet: 45-50% carbs; 45 grams per meal + three 15 gram snacks = 165 grams per day; low fat, calorie restricted (500 Calorie deficit).  Otherwise known as a “low fat diet (LFD).”

In their words: “Active Comparator: American Diabetes Association Diet.  Participants in the American Diabetes Association (ADA) diet group will receive standard ADA advice. The diet includes high-fiber foods (such as vegetables, fruits, whole grains, and legumes), low-fat dairy products, fresh fish, and foods low in saturated fat.

Very low carbohydrate diet: Ketogenic; <50 grams of carb per day, no calorie restriction, just a goal of blood ketones 0.5 – 3 mM.

In their words: “Experimental: Low Carbohydrate Diet.  Participants will be instructed to follow a low carbohydrate diet: carbohydrate intake 10-50 grams a day not including fiber. Foods permitted include: meats, poultry, fish, eggs, cheese, cream, some nuts and seeds, green leafy vegetables, and most other non-starchy vegetables. Because most individuals self-limit caloric intake, no calorie restriction will be recommended.

Both groups were advised to maintain their usual protein intake.

Continue reading

Share

On resistant starch and blood glucose control

For overall health and well-being, fermented foods like sauerkraut and kefir are great.  Especially when following a low carbohydrate diet which is generally low in the types of foods which feed the gut microbiome.

For those with gastrointestinal problems, the gut microbiota is probably involved.  Whether it is bacterial overgrowth or dysbiosis, gut bugs are usually the culprit.  Treatment options vary widely, ranging from global extermination with vinegar & a low fibre diet (as per Jane Plain), or remodeling the microbiome with a prebiotic like galactooligosaccharides.   Probiotics like bifidobacteria can help, too, if they’re administered with either prebiotics or fermented foods (they need something to nourish them in transit).  Dark chocolate is also an excellent vessel.  Resistant starch is another option, although the question remains as to whether or not this is compatible with a low carbohydrate diet.

Resistant starch has been around for a while, and when I was in school it received about 10 minutes of attention during the fibre lecture.  But Jimmy Moore and Richard Nikolay have been talking about it a lot lately so I decided to freshen up on the topic.  In brief, it can be therapeutic for GI issues, but some studies have shown mixed effects on glucose & insulin metabolism.  The former is virtually unarguable, but I found the latter interesting.  And the impact of resistant starch on ketosis is included as well.

Continue reading

Share

Impact of a low-carbohydrate, high-fat diet on gut microbiota.

NPR recently reported on a study where the participants ate either a meat-based, fiber-free ketogenic diet or a vegetarian diet and had their gut microflora analyzed.  The low carb diet was much higher in fat, and as such, increased the prevalence of a microbe involved in fat digestion.  “Bilophila.”  The article focused on this one and cited a 2012 study where Bilophila was associated with intestinal inflammation… however, the ketogenic diet increased the levels of Bacteroides and decreased Firmicutes.  These are the two that brought the whole gut microbe-obesity connection into the spotlight.  The microbiome in obese mice is characterized by low Bacteriodetes and high Firmicutes. Fecal transplants from obese mice to lean mice causes them to gain weight.  Little is known about Bilophila relative to Bacteriodetes & Firmicutes, and I suspect the focus was on Bilophila because the authors wanted something negative to say about a meat-based, fiber-free ketogenic diet, and that 2012 mouse study suggested Bilophila could be their answer.

Continue reading

Share