Category Archives: endurance

Cyclical ketosis, glycogen depletion, and nutrient partitioning

Meal & exercise timing in the contexts of “damage control” and nutrient partitioning are frequent topics on this blog.  I generally opt for a pre-workout meal, but nutrient timing hasn’t panned out very well in the literature.  That’s probably why I’m open to the idea of resistance exercise in the fasted state.  A lot of pseudoscientific arguments can be made for both fed and fasted exercise, and since a few blog posts have already been dedicated to the former, this one will focus on the latter.

The pseudoscience explanation is something like this: since fatty acids are elevated when fasting, exercise in this condition will burn more fat; and chronically doing so will increase mitochondria #.  The lack of dietary carbs might enhance exercise-induced glycogen depletion, which itself would bias more post-workout calories toward glycogen synthesis / supercompensation.  Much of this is actually true, but has really only been validated for endurance training (eg, Stannard 2010, Van Proeyen 2011, & Trabelsi 2012; but not here Paoli 2011)… and the few times it’s been studied in the context of resistance exercise, no effect (eg, Moore 2007 & Trabelsi 2013).  However, there are some pretty interesting tidbits (beyond the pseudoscience) which suggest how/why it might work, in the right context.

Exercising fasted or fed for fat loss?  Influence of food intake on RER and EPOC after a bout of endurance training (Paoli et al., 2011)

John Kiefer, an advocate of resistance exercise in the fasted state, mentioned: “the sympathetic nervous system responds quicker to fasted-exercise. You release adrenaline faster. Your body is more sensitive particularly to the fat burning properties of adrenaline and you get bigger rushes of adrenaline.”

Much of this is spot on.  That is, ketogenic dieting and glycogen depletion increase exercise-induced sympathetic activation and fat oxidation (eg, Jansson 1982, Langfort 1996, & Weltan 1998).

The question is: can this improve nutrient partitioning and physical performance?  Magic 8-Ball says: “Signs point to yes.”  I concur.

Contrary to popular beliefs, glycogen depletion per se doesn’t harm many aspects of physical performance.  A lot of fuel systems are at play; you don’t need a full tank of glycogen.

Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men (Langfort et al., 1996)

High-intensity exercise performance is not impaired by low intramuscular glycogen (Symons & Jacobs, 1989)

Increased fat oxidation compensates for reduced glycogen at lower exercise intensities (eg, Zderic 2004), and ketoadaptation may do the same at higher intensities.

Continue reading


More on physical performance and ketoadaptation

The various studies on how low carbohydrate diets impact physical performance are very nuanced.  Here’s what I mean by that.

Exhibit A. Phinney 1980

Phinney 1980

In this [pioneering] study, obese patients were subjected to a variety of performance assessments in a baseline period, then after 1 and 6 weeks of weight loss via protein-sparing modified fast (1.2 g/kg ideal body weight from lean meat, fish, or fowl; probably around 80 grams of protein/d, 500-750 kcal/d). They lost a lot of weight, 23 pounds on average, two-thirds of which was body fat. There was no exercise intervention, just the performance assessments.

During the ‘exercise to exhaustion’ treadmill exercise, RQ steadily declined from baseline to week 1 to week 6, indicating progressively more reliance on fat oxidation.  This was confirmed via muscle glycogen levels pre- and post-exercise: during the baseline testing, they declined by 15%; after 6 weeks of ketoadaptation, however, they only declined by 2%, while ‘time to exhaustion’ increased by 55%.  After only 1 week of the diet, time to exhaustion plummeted, as expected, by 20%.

This was, as mentioned above, a pioneering study in the field of ketoadaptation. It also challenges one of the prevailing theories of ‘fatigue’ …while carb-adapted, the subjects fatigued after 168 minutes, with muscle glycogen levels of 1.29 (reduced by 15%); while ketoadapted, they fatigued after 249 minutes with muscle glycogen levels of 1.02 (reduced by 2%).  In other words, they had less glycogen to begin with, used less glycogen during exercise, and performed significantly better (running on fat & ketones).

Exhibit B. Vogt 2003

Highly trained endurance athletes followed a high fat (53% fat, 32% carbs) or high carb (17% fat, 68% carbs) diet for 5 weeks in a randomized crossover study. In contrast to Phinney’s study, these participants were: 1) highly trained; and 2) exercised throughout the study.

Maximal power output and VO2max during a similar ‘time to exhaustion’ test was similar after both diet periods.  Same for total work output during a 20 minute ‘all-out’ cycling time trial and half-marathon running time.  Muscle glycogen was modestly, albeit statistically non-significantly lower after ketoadaption; however, ketoadapted athletes relied on a higher proportion of fat oxidation to fuel performance as indicated by lower RQ at every level of exercise intensity:

Vogt RQ

Again, this is the essence of ketoadaptation. Physical performance as good as or better using fat and fat-derived fuels.

One reason Phinney’s glycogen-depeleted ketoadapted subjects may have done so well is their reliance on ketones (probable) and intramyocellular lipids (IMCL) (possible).  In Vogt’s study, IMCL increased from 0.69 to 1.54% after ketoadaptation…

Also, food intake and body fat declined, and training volume increased in the low fat group; whereas food intake increased, and body fat and training volume declined in the high fat group.  Reminiscent of anything?

High fat, low carb -> eat more, exercise less, STILL LOSE BODY FAT.

Vogt data

Sorcery?  No.  Diet impacts more than just mood and body composition – resting energy expenditure increased in the ketogenic dieters.  This isn’t an isolated finding.

Exhibit C. Fleming 2003 

This was another study in non-trained athletes, consuming high fat (61% fat) or control (25% fat) diets for 6 weeks.  The tests were the 30-second Wingate, to examine supramaximal performance, and a 45-minute timed ride, to examine submaximal performance.

This study differed from the previous two in several significant ways.  For starters, peak power output declined in both groups, slightly more so in the high fat group (-10% vs. -8%).  Furthermore, RQ didn’t wasn’t significantly lower during this test in the high fat group, which possibly suggests they weren’t properly ketoadapted.  In Phinney’s study, the large energy deficit ensured ketoadaptation; this study lacked that aspect, somewhat more similar to Vogt’s, although unlike Vogt’s, these participants weren’t athletes which presumably makes ketoadaptation more difficult.

There are many factors at play… I wasn’t kidding when I said these studies are very nuanced!

Exhibit D. the infamous, Paoli 2012 

These were ‘elite artistic gymnasts,’ who could likely beat you in a race running backwards.  The ketogenic phase consisted of 55% fat and much more protein than the control phase (39% fat; protein: 41% vs. 15%). The significantly higher protein content was modestly offset by slightly more calories in the control phase, which reduces the amount of protein required to maintain nitrogen balance.

In this study, performance was, for the most part, ‘maintained,’ with relative increases in a few of the tests; eg, the “legs closed barrier.”  Changes in body composition were more robust: significantly reduced body fat and increased lean body mass after 30 days of ketogenic dieting (with their normal exercise routine).

Paoli data

The major confounder in this study was the use of an herbal cocktail only in the ketogenic diet group; despite this, the results are largely in line with the other studies.  For more on this study, see here.

Exhibit E. the most dramatic one to date: Sawyer 2013 

Please see here for the details, but in brief, strength-trained athletes showed improvements in high intensity exercise performance after only 7 days of carbohydrate restriction.  The nuances of this particular study are discussed more here.


Collectively, these studies show that physical performance in both endurance and high intensity realms does not always suffer, can be maintained, and in some cases is improved by ketogenic dieting.  Important factors are duration (to ensure adequate ketoadaptation), energy balance, and regular physical activity (athletes and regular exercisers can adapt to burning fat much quicker than sedentary folks).


calories proper


New study: high intensity exercise on a low carb diet.

Switch an athlete from their standard carbohydrate-rich diet to a low carb ketogenic one and suddenly performance tanks.  It is known.  Give them a few weeks to adapt, however, and it recovers.  This much was established for mainly endurance-related performance parameters by Steve Phinney and colleagues in the 1980’s (eg, Phinney et al., 1983).  Then, along came Antonio Paoli, Dominic D’Agostino, and others who showed a similar phenomenon in gymnasts, a population that routinely exercises at higher levels of intensity (Paoli et al., 2012).  Notably, in these studies the athletes were allowed adequate time to adapt to the new metabolic milieu – sometimes referred to as ketoadaptation.  Three weeks appears to be the minimum amount of time required for ketoadaptation; ie, studies of shorter duration generally show: low carb = poor physical performance.

…which is why I was surprised to see this one:

Effects of a short-term carbohydrate-restricted diet on strength and power performance (Sawyer et al., 2014)

These researchers subjected ~30 strength-trained individuals to a battery of performance assessments before and after 7 days of a low carb [ketogenic] diet.  Usually I would’ve stopped reading at this point because 7 days is too short.  But there were some nuances in the way this particular study was designed which piqued my interest.

Continue reading


Sarcopenia has little to do with aging

It has to do with the duration of time spent being sedentary.

They say a picture is worth a thousand words, but luckily enough today you get both.

Sarcopenia: “poverty of flesh,” or the age-induced loss of skeletal muscle mass, strength, and function = reduced quality of life.  Sorry old-timers, but I hereby officially revise the definition from “aging-induced” to “sedentary-induced.”  Herein, I present evidence that sarcopenia is not a phenomenon of aging per se, but rather of disuse atrophy.  Dear Webster’s & Britannica, please revise accordingly.

Skeletal muscles: use ‘em or lose ‘em #TPMC

Thanks to Julianne Taylor & Skyler Tanner for directing me to these images.

divide and conquer

Exhibit A. Chronic exercise preserves lean muscle mass in masters athletes (Wroblewski et al., 2011)

This study evaluated “high-level recreational athletes.”  “Masters” just means they were over 40.  And “high-level” doesn’t mean “elite,” it just means they exercised 4-5 times per week.  These weren’t super-obsessed gym rats… it’s probably who I’ll be in 7 years [sigh].

Continue reading


Westside Barbell, Hormesis, and Antifragility

Some people think Westside makes some of the strongest athletes in the world because unlike most other training regimes, they are constantly lifting very heavy weight.  Other protocols restrict heavy lifting to certain times of the year, in-season / off-season, etc.  At Westside, you’re going heavy on an exercise that changes very frequently (every 1 – 3 weeks).  And it’s this latter point that provides the basis for why other people think Westside works.  By constantly changing which exercise is lifted at maximal intensity, the body never fully adapts, or gets into a rut – this is part of Westside’s ‘Conjugate Method.’

The principle is embraced by Crossfit, as per their random workouts-of-the-day, and also follows a tangent of the Hormesis theory: small doses of individual exercises, eg, conventional deadlifts one week, good mornings the next, sumo deads the next week, and so on and so forth – will improve your squats; the body never knows what’s coming (even though you might have planned it weeks in advance, or at least planned to check The WOD Shop).  Also discussed albeit briefly, in Taleb’s Antifragile, wherein being prepared for “random” shocks seem to benefit the system as a whole, or make it stronger.  Sedentary makes you fragile, weak, and soft; exercise makes you robust; Westside is Antifragile.


Continue reading



Athletes who drop carbs cold turkey suddenly suck.  It is known.  

But with a smidge of stick-to-it-iveness, performance completely recovers, in virtually every.  measurable.  aspect.  

This was shown years and years ago, in a seminal study by Drs Phinney, Bistrian, Evans, Gervino, and Blackburn.

The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation (1983)

Normally, fatty acids fuel low intensity exercise and carbs fuel high.  This is because high intensity exercise requires a high rate of ATP production, and glycogen to lactate generates ATP faster than a speeding bullet.  This is what makes power.  Getting ATP from fatty acids is like draining maple syrup from trees [at first].

mito pic

However, go low carb for long enough and the syrup begins to flow like water.  I lack the time to show what “long enough” entails, but  4 out of 5 studies on low carb diets and performance that only last a few days will show this.  Ketoadaptation takes time; ~3 weeks.

Continue reading


Milo of Croton vs. concurrent training

Lesson 1.  Milo of Croton

Every day since a very young age, Milo would drape his calf over his shoulders and do his daily exercises.  As his calf grew, so did Milo’s strength.  Many years passed and by the time of the Olympic games, Milo’s calf had become a full-grown bull and Milo’s strength became unparalleled in all the land (or so the story goes).

This is how strength-training works.  Increasing the amount of weight you lift progressively, consistently, and frequently makes you stronger.

Lesson 2.  Concurrent training

Resistance training builds muscle and strength.  Endurance exercise is good for the heart, burns fat and muscle, but doesn’t make you stronger.  Endurance exercise hinders the gains reaped from resistance exercise, not vice versa.  Interpretation: runners should lift; lifters shouldn’t run (sprints don’t count).

Continue reading