Category Archives: Dietary fat

Saturated fat, cholesterol, and carbohydrates

“You catch more flies with honey…”

^^^good policy in general, but especially for debating in the realm of nutritional sciences.


A short while back, Nina Teicholz discussed low carb ketogenic diets and plant-based diets with John Mackey.  Although I disagree with the dichotomy (keto vs. plant-based), it’s well-worth a watch:



Three topics that could not be avoided in such a discussion: saturated fat, cholesterol, and carbohydrates.



Continue reading


Good calories

Nuts are good calories.

I’m not a big fan of the omega-6 fatty acid linoleate, but that’s largely in the context of processed foods and confectioneries, where it’s more than likely no longer in it’s native form (Dc9,1218:2n6)… but in the context of unprocessed whole foods (eg, nuts), a little n6 is fine imo.

What are good calories?  They’re nutrient-dense and don’t generally lead to overeating… like the opposite of soda and junk food.  Nuts are low carb and many are highly ketogenic (eg, Brazils, macadamias, and pecans are ~90%fat).  Mr. Ramsey may even approve of macadamias because they have virtually zero PUFAs.

BONUS: magnesium, copper, selenium, many trace minerals and micronutrients, etc., etc.

I’m not saying you should crack open a can of Deluxe Mixed Nuts and sit down with nothing to do other than NOM NOM NOM ALL THE NUTZ.  I’m talking about a few nuts with a meal.  Possibly earlier in the day (coinciding with LIGHT); nuts are tryptophan-rich and this may improve melatonin onset -> good for circadian rhythms:


nuts and melatonin



Appetitive, dietary, and health effects of almonds consumed with meals or as snacks: a randomized controlled trial (Tan and Mattes, 2013)

In this study, the participants were instructed to eat a serving of almonds (~43g, ~245 kcal) daily for four weeks, at different times of the day (with breakfast, midmorning snack, lunch, or afternoon snack).

Regardless of when the almonds were consumed, the calories were practically completely compensated for.  The participants unwittingly ate less other stuff.  And in 3 out of 4 of the conditions, the almonds were so satiating that the participants actually ended up eating fewer overall calories.

That, in a nutshell, is what I call “good calories,” and I don’t think it’s too far from Taubes’ original definition… especially because it was accompanied with [modest] reductions in body fat (NS).  To be clear, they were instructed to eat more (in the form of almonds), but ended up eating less, BECAUSE ALMONDS.  This wasn’t a cross-sectional study, so no healthy user bias or other obvious confounders.

Further, the participants clearly weren’t obesity resistant.  They were overweight, obese, or lean with a strong family history of type 2 diabetes.  Sam Feltham would’ve been excluded.

This is not an isolated finding: another study showed a dose-dependent response to almonds: 28g or 42g consumed in the morning resulted in a compensatory reduction of hunger and total energy intake at lunch and dinner (Hull et al., 2014).  This wouldn’t happen with soda or junk food.



Another study tested ~350 kcal almonds daily for 10 weeks and concluded: “Ten weeks of daily almond consumption did not cause a change in body weight. This was predominantly due to compensation for the energy contained in the almonds through reduced food intake from other sources” (Hollis and Mattes, 2007).

Almonds vs. complex carbs? Almonds, FTW.

1 Brazil nut daily: “After 6 months, improvements in verbal fluency and constructional praxis (two measures of cognitive performance) were significantly greater on the supplemented group when compared with the control group.”    ONE FRIGGIN’ NUT!


Walnuts protect against alcohol-induced liver damage (in rats) (Bati et al., 2015) and may improve brain health (in humans) (Poulose et al., 2014).

Pistachios improve metabolic and vascular parameters (Kasliwal et al., 2015).

Meta-analysis (not an intervention study): nut consumption is associated with lower risk of all-cause mortality (Grosso et al., 2015). Yeah yeah yeah, I know, correlation =/= causation.  Whatever.

Nuts are good calories.  That’s all I’m saying.


Tl;dr: buy these and one of these, not this.



calories proper




Carbs: Low vs. Lower



This was met with much backlash from the low carb cavalry, because, well, if low is good then lower must be better

I’m not anti-keto; but I’m not anti-science.  FACT.  


“…some people are not genetically equipped to thrive in prolonged nutritional ketosis.” –Peter Attia

  Continue reading



Why Low Carb?

OmniCarb (Sacks et al., 2014)

Study design & results in a nutshell:

5 weeks, low(ish) vs. high carb (40 vs. 58%) with the calorie difference split between protein (23 vs. 16%) and fat (37 vs. 27%).  In other words, the low(ish) carb diet was higher in protein and fat.  And there was 2 versions of each diet —  a high and low glycemic index.  Lots of crossing over; all in all, weak intervention but decent study design & execution.

Aaaand nothing drastic happened.  Goal was insulin sensitivity, not weight loss.


glucose and insulin


Important points:

1) The participants were relatively healthy at baseline.  Anyone on meds was excluded.  Average BMI 32.  Mostly educated non-smokers.  This population is expected to respond reasonably well to any diet (wrt body weight… see next point).

2) “Calorie intake was adjusted to maintain initial body weight.”

^^^this really knocks the wind out of low carb. One of the big benefits of cutting carbs is spontaneous appetite suppression –- two points here: 1) this effect is most prominent in obese IR; and 2) it is more relevant to weight loss.  By not targeting insulin resistant and/or type 2 diabetics, and feeding specifically to prevent weight loss, I ask you this: Why Low Carb?

3) the biggest difference between the two diets was carbs (45% higher in low[ish] fat group), but the biggest difference from baseline, was protein in the LC group (53% increase).  In other words, the Low Carb group had their carbs decreased from 50 to 40% of calories. *meh*

4) Body composition wasn’t assessed; so even if LCHP induced nutrient partitioning and improved body comp, we wouldn’t know it.

5) Everyone was eating cereal or oatmeal for breakfast, bread with most meals, and pasta or rice for dinner.  What did you expect?  Really?


Prior posts in what seems to be developing into a series of rants:
2 New Diet Studies
CICO and rant 


calories proper


CICO and rant

“Wait… what?  nutrient partitioning?”

Calories In, Calories Out should not be interpreted as “eat less, move more,” but rather kept in its more meaningless form of: “if you eat less than you expend, you’ll lose weight.”  At least then, it’s correct… meaningless, but correct.  Eating less and moving more is no guarantee of fat loss, in part, because total energy expenditure isn’t constant and there’s that whole thing with nutrient partitioning.

For obese insulin resistant folks, this is Low Carb’s strong suit: it causes “eat less, move more”spontaneously.

For some obese insulin sensitive patients, for whatever reason, their adherence and success is greater with Low Fat.  You might say, “yeah, but those suckers had to count calories.”  To that, I’d counter with: “it doesn’t matter, THEY WERE MORE SUCCESSFUL COUNTING CALORIES ON LOW FAT THAN NOT COUNTING ON LOW CARB.”  The spontaneous reduction in appetite obviously didn’t cut it.  Do not be in denial of these cases.

Continue reading


Ketone bodies as signaling metabolites

*non sequiter*

One of the ways dietary carbohydrate contributes to liver fat is via ChREBP: “carbohydrate-response element binding protein.”  It responds to a glucose metabolite and activates transcription of lipogenic genes.  Insulin helps.  Ketones do the opposite (Nakagawa et al., 2013), by inhibiting the translocation of ChREBP into the nucleus where it does it’s dirty work:




More interestingly, ketones are histone deacetylase inhibitors (HDACi)… this leads to more histone acetylation.  Benefits of fasting sans fasting?  Modulating of acetylation is a MAJOR regulator of circadian rhythmicity.

Butyrate is another HDACi, so have some fibrous plant foods with your red wine and dark chocolate.  Anti-aging (mostly worm studies, but still).


Continue reading


Omega-3 Index

“Need” is a funny concept.  You don’t need to eat seafood.  You don’t need an appendix or legs, either.

An article about the Omega-3 Index was published in Whole Foods Magazine.  Scanning through the figures, I noticed a few interesting studies.

For example, Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease (Farzaneh-Far et al., 2010)

Telomere length is believed to be a biomarker of aging: the shorter your telomeres, the faster you’re aging.  In the study, they measured telomere length in white blood cells and EPA+DHA in whole blood at baseline and again 5 years later.

omega-3 intake and telomerase

Quartile 1: EPA+DHA = 2.3% of the fatty acids in whole blood.

Quartile 2: 3.3%

Quartile 3: 4.3%

Quartile 4: 7.3%

Potential confounders: quartile 4 was comprised of educated rich white old non-smokers with low levels of inflammation, but the statisticians assure us those variables were controlled for… so there’s that.

Continue reading


Because chocolate

To improve a memory, consider chocolate –NYT

Dark chocolate could improve memory by 25%, but you’d have to eat 7 bars a day –PBS

Dietary flavanols reverse age-related memory decline –Columbia University Medical Centre

dark chocolate


The actual study: Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults (Brickman et al., 2014)

High flavanol group: 900 mg cocoa flavanols and 138 mg epicatechin (that’d be a LOT of dark chocolate).

Control: 10 mg cocoa flavanols and 2 mg epicatechin

Study duration: 3 months

Funding: NIH & Mars lol

Continue reading


Vegetable oil fatty acids are not essential. 

They are conditionally essential at best, only if docosahexaenoic acid (DHA) is lacking.  We can’t synthesize omega 3 fatty acids, and indeed they do prevent/cure certain manifestations of “essential fatty acid (EFA) deficiency” (Weise et al., 1958), but DHA can do all that and more.  Not that I recommend this, but a diet completely devoid of 18-carbon vege oil fatty acids will not produce EFA deficiency in the presence of DHA. (“vege,” rhymes with “wedge”)

Essential fatty acid metabolism


The “parent essential oils” are linoleic acid (LA) and alpha-linolenic acid (ALA).  The others, which I think are more important and the truly “essential” ones are eicosapentaenoic acid (EPA), arachidonic acid (AA), but mostly just DHA.

The first manifestation of EFA deficiency is dermatitis (Prottey et al., 1975).  Some people say LA is necessary to prevent this, but it would be better phrased as “LA prevents dermatitis;” not “LA is necessary to prevent dermatitis.”  All of the evidence suggesting LA is essential is in the context of DHA deficiency.

Technically, we can convert a bit of ALA to DHA, estrogen helps, testosterone doesn’t (women have better conversion rates)… and I’d speculate that the reverse is probably easier (DHA –> ALA).

Continue reading


Ketoadaptation and physiological insulin resistance

This is where the magic happens.

Rat pups, fed a flaxseed oil-based ketogenic diet from weaning onward – note the drop-off in ketones after 2 weeks (Likhodii et al., 2002):

flaxseed ketogenic diet

What happened on day 17?

Patient history: these rats have been “low carb” their whole lives.

Side note: flaxseed oil is very ketogenic! (Likhodii et al., 2000):

ketogenic rodent diets

Flaxseed oil-based ketogenic diet produced higher ketones than 48h fasting; the same can’t be said for butter or lard.  PUFAs in general are more ketogenic than saturated fats in humans, too (eg, Fuehrlein et al., 2004):Saturated polyunsaturated ketones

Crisco keto (adult rats) (Rho et al., 1999):

shortening-based ketogenic diet

suspect those two rogue peaks were experiment days…

Continue reading